Overall Statistics
Total Trades
1144
Average Win
0.22%
Average Loss
-0.21%
Compounding Annual Return
55.825%
Drawdown
10.200%
Expectancy
0.131
Net Profit
25.203%
Sharpe Ratio
1.407
Loss Rate
44%
Win Rate
56%
Profit-Loss Ratio
1.03
Alpha
-0.001
Beta
24.264
Annual Standard Deviation
0.236
Annual Variance
0.056
Information Ratio
1.349
Tracking Error
0.236
Treynor Ratio
0.014
Total Fees
$1426.85
from Alphas.HistoricalReturnsAlphaModel import HistoricalReturnsAlphaModel
from Execution.ImmediateExecutionModel import ImmediateExecutionModel
from Portfolio.EqualWeightingPortfolioConstructionModel import EqualWeightingPortfolioConstructionModel

class ResistanceNadionGearbox(QCAlgorithm):

    def Initialize(self):
        self.stateData = { }
        self.SetStartDate(2019, 1, 19)  # Set Start Date
        self.SetCash(100000)  # Set Strategy Cash
        
        # Add crypto pair BTCUSD (provide for Universe Selection)
        self.AddCrypto("BTCUSD", Resolution.Daily)

        self.AddAlpha(HistoricalReturnsAlphaModel(7, Resolution.Daily))

        self.SetExecution(ImmediateExecutionModel())

        self.SetPortfolioConstruction(EqualWeightingPortfolioConstructionModel())

        self.__numberOfSymbols = 100
        self.__numberOfSymbolsFine = 5
        self.SetUniverseSelection(FineFundamentalUniverseSelectionModel(self.CoarseSelectionFunction, self.FineSelectionFunction, None, None))

    # sort the data by daily dollar volume and take the top 'NumberOfSymbols'
    def CoarseSelectionFunction(self, coarse):
        # sort descending by daily dollar volume
        sortedByDollarVolume = sorted(coarse, key=lambda x: x.DollarVolume, reverse=True)
    
        # return the symbol objects of the top entries from our sorted collection
        return [ x.Symbol for x in sortedByDollarVolume[:self.__numberOfSymbols] ]
            
    # sort the data by P/E ratio and take the top 'NumberOfSymbolsFine'
    def FineSelectionFunction(self, fine):
        # sort descending by P/E ratio
        sortedByPeRatio = sorted(fine, key=lambda x: x.ValuationRatios.PERatio, reverse=True)
    
        # take the top entries from our sorted collection
        return [ x.Symbol for x in sortedByPeRatio[:self.__numberOfSymbolsFine] ]