Overall Statistics
Total Trades
8390
Average Win
0.22%
Average Loss
-0.18%
Compounding Annual Return
60.365%
Drawdown
17.400%
Expectancy
0.648
Net Profit
11295.206%
Sharpe Ratio
2.132
Probabilistic Sharpe Ratio
99.962%
Loss Rate
27%
Win Rate
73%
Profit-Loss Ratio
1.25
Alpha
0.36
Beta
0.425
Annual Standard Deviation
0.193
Annual Variance
0.037
Information Ratio
1.462
Tracking Error
0.2
Treynor Ratio
0.966
Total Fees
$568237.29
Estimated Strategy Capacity
$1400000.00
Lowest Capacity Asset
TMF UBTUG7D0B7TX
class MovingAverageAlphaCreationModel(AlphaModel):

    def __init__(self, algorithm, name, activateAlpha, parametersDict, canarySymbol,
                 periodShortSMA, periodLongSMA, movingAverageThresholds, rebalancingFrequency):

        self.algo = algorithm
        self.Name = name
        self.activateAlpha = activateAlpha
        self.parametersDict = parametersDict
        self.movingAverageThresholds = movingAverageThresholds
        self.rebalancingFrequency = rebalancingFrequency

        self.weightsDict = {}
        self.timeToEmitInsights = False

        self.smaRatio = None
        if self.activateAlpha:
            shortSMA = algorithm.SMA(canarySymbol, periodShortSMA, Resolution.Daily)
            longSMA = algorithm.SMA(canarySymbol, periodLongSMA, Resolution.Daily)
            self.smaRatio = IndicatorExtensions.Over(shortSMA, longSMA)

    def Update(self, algorithm, data):
        
        insights = []

        if not self.timeToEmitInsights:
            return insights
        
        insightExpiry = Expiry.EndOfDay(algorithm.Time)
        
        # loop through insights and send portfolio targets
        for symbol, weight in self.weightsDict.items():
            if symbol.Value.split('_')[0] != 'CUSTOM' and not data.ContainsKey(symbol):
                continue
            if weight > 0:
                insightDirection = InsightDirection.Up
            elif weight < 0:
                insightDirection = InsightDirection.Down
            else:
                insightDirection = InsightDirection.Flat
                
            insights.append(Insight.Price(symbol, insightExpiry, insightDirection, None, None, None, abs(weight)))
                            
        self.timeToEmitInsights = False
        
        return insights

    def GenerateSignals(self):

        """ Create new signals """

        if not self.activateAlpha or not self.smaRatio.IsReady:
            return

        if self.smaRatio.Current.Value >= self.movingAverageThresholds[0]:
            self.weightsDict = {security.Symbol: self.parametersDict[security.Symbol.Value][0]
                                for security in self.algo.ActiveSecurities.Values
                                if security.Symbol.Value in self.parametersDict}

        elif self.smaRatio.Current.Value >= self.movingAverageThresholds[1]:
            self.weightsDict = {security.Symbol: self.parametersDict[security.Symbol.Value][1]
                                for security in self.algo.ActiveSecurities.Values
                                if security.Symbol.Value in self.parametersDict}

        else:
            self.weightsDict = {security.Symbol: self.parametersDict[security.Symbol.Value][2]
                                for security in self.algo.ActiveSecurities.Values
                                if security.Symbol.Value in self.parametersDict}
        
        self.timeToEmitInsights = True

    def OnSecuritiesChanged(self, algorithm, changes):

        """ Actions to take every time the universe changes """

        for security in changes.AddedSecurities:
            if security.Symbol.Value == 'SPY':
                symbol = security.Symbol
                algorithm.Schedule.On(self.rebalancingFrequency[0](symbol),
                                      algorithm.TimeRules.AfterMarketOpen(symbol, self.rebalancingFrequency[1]),
                                      self.GenerateSignals)
import pandas as pd
import general_utils as utils
import json

class BuyAndHoldAlphaCreationModel(AlphaModel):

    def __init__(self, algorithm, name, activateAlpha, parametersDict, rebalancingFrequency):

        self.algo = algorithm
        self.Name = name
        self.activateAlpha = activateAlpha
        self.parametersDict = parametersDict
        self.rebalancingFrequency = rebalancingFrequency

        self.weightsDict = {}
        self.timeToEmitInsights = False
        self.weightsRetrieved = False
        self.monthStartIsHere = False
        
        # retrieve information from object store in live mode
        if self.algo.LiveMode:
            dictFromOS = utils.ReadFromObjectStore(self.algo, 'BuyAndHoldSVOL')
            if dictFromOS:
                self.algo.Log('BuyAndHoldSVOL; retrieving last optimal weights from object store: ' + str(dictFromOS))
                self.weightsDict = {self.algo.Symbol(ticker): weight for ticker, weight in dictFromOS.items()}
                self.weightsRetrieved = True

    def Update(self, algorithm, data):
        
        insights = []

        if not self.timeToEmitInsights:
            return insights
        
        insightExpiry = Expiry.EndOfDay(algorithm.Time)
        
        # loop through insights and send portfolio targets
        for symbol, weight in self.weightsDict.items():
            if symbol.Value.split('_')[0] != 'CUSTOM' and not data.ContainsKey(symbol):
                continue
            if weight > 0:
                insightDirection = InsightDirection.Up
            elif weight < 0:
                insightDirection = InsightDirection.Down
            else:
                insightDirection = InsightDirection.Flat
                
            insights.append(Insight.Price(symbol, insightExpiry, insightDirection, None, None, None, abs(weight)))
                            
        self.timeToEmitInsights = False
        
        return insights

    def GenerateSignals(self):

        """ Create new signals """

        if not self.activateAlpha:
            return
        
        if self.monthStartIsHere or self.weightsRetrieved:
            self.weightsDict = {security.Symbol: self.parametersDict[security.Symbol.Value]
                            for security in self.algo.ActiveSecurities.Values
                            if security.Symbol.Value in self.parametersDict}
                            
            self.weightsRetrieved = False
        
            self.timeToEmitInsights = True
            
            if self.algo.LiveMode or self.algo.BackTestWarmUp == True:
                dictToOS = {symbol.Value: weight for symbol, weight in self.weightsDict.items()}
                utils.SaveToObjectStore(self.algo, 'BuyAndHoldSVOL', dictToOS)
                
            self.monthStartIsHere = False
    
    
    def MonthStart(self):
        self.monthStartIsHere = True
    
    def OnSecuritiesChanged(self, algorithm, changes):

        """ Actions to take every time the universe changes """

        for security in changes.AddedSecurities:
            if security.Symbol.Value == 'SPY':
                symbol = security.Symbol
                algorithm.Schedule.On(self.rebalancingFrequency[0](symbol),
                                      algorithm.TimeRules.AfterMarketOpen(symbol, self.rebalancingFrequency[1]),
                                      self.MonthStart)
                algorithm.Schedule.On(algorithm.DateRules.EveryDay(symbol),
                                      algorithm.TimeRules.AfterMarketOpen(symbol, self.rebalancingFrequency[1]),
                                      self.GenerateSignals)
def GetAlphaParameters(self, alphaName=None, parameter=None):

    stocksTicker = 'TQQQ'
    spyTicker = 'SPXL'
    bondsTicker = 'TMF'
    cashTicker = 'IEF'
    inflTicker = 'TIP'
    goldTicker = 'IAU'
    volatilityTicker = 'UVXY'
    #volatilityFactor = 1
    minutesAfterStart = 90

    alphaParametersDict = {'RotationalOptimizer': {'activate': True,
                                                   'riskyAssetsParameters': {
                                                                             'SPY': {'addTicker': [True, spyTicker],
                                                                                     'sma': [200, (-0.10, 0.10), 0.0],
                                                                                     'macd': [(231, 567, 168), 0, 0.3],
                                                                                     'yield': [True, 0.2],
                                                                                     'optimizationBounds': (0, 1)},
                                                                             'QQQ': {'addTicker': [True, stocksTicker],
                                                                                     'sma': [200, (-0.20, 0.20), 0.0],
                                                                                     'macd': [(231, 567, 168), 0, 0.3],
                                                                                     'yield': [True, 0.2],
                                                                                     'optimizationBounds': (0, 1)},
                                                                             'TLT': {'addTicker': [True, bondsTicker],
                                                                                     'sma': [300, (-0.15, 0.15), 0.0],
                                                                                     'macd': [(50, 150, 30), 0, 0.0],
                                                                                     'yield': [False, 0],
                                                                                     'optimizationBounds': (0, 1)},
                                                                             #'GLD': {'addTicker': [True, 'DGP'],
                                                                             #       'sma': [100, (-0.10, 0.10), 0.0],
                                                                             #       'macd': [(50, 150, 30), 0, 0.3],
                                                                             #       'yield': [False, 0],
                                                                             #       'optimizationBounds': (0, 1)},
                                                                             #'BITO': {'addTicker': [True, 'BLOK'],     #Change to BITO
                                                                             #       'sma': [200, (-0.20, 0.20), 0.0],
                                                                             #       'macd': [(50, 150, 30), 0, 0.0],
                                                                             #       'yield': [False, 0],
                                                                             #       'optimizationBounds': (0, 1)}   
                                                                             },
                                                   'lookbackOptimization': 63,
                                                   'objFunction': 'minVariance',
                                                   'tickerCash': inflTicker,
                                                   'rebalancingFrequency': (self.DateRules.MonthStart, minutesAfterStart),
                                                   #'optimizationBounds': (0.01, 0.01)},
                                                   'optimizationBounds': (0.10, 1.00)},
                                                   
                            'RotationalOptimizer1x': {'activate': False,
                                                    'riskyAssetsParameters': {       
                                                                             'SPY': {'addTicker': [True, 'SPY'],  #Change to actual tickers
                                                                                     'sma': [200, (-0.10, 0.10), 0],
                                                                                     'macd': [(231, 567, 168), 0, 0.3],
                                                                                     'yield': [False, 0],
                                                                                     'optimizationBounds': (0, 1)},
                                                                             'TLT': {'addTicker': [True, 'TLT'],
                                                                                     'sma': [600, (-0.2, 0.2), 0],
                                                                                     'macd': [(63, 168, 42), 0, 0],
                                                                                     'yield': [False, 0],
                                                                                     'optimizationBounds': (0, 1)},
                                                                             'GLD': {'addTicker': [True, goldTicker],
                                                                                    'sma': [100, (-0.15, 0.15), 0],
                                                                                    'macd': [(50, 150, 30), 0, 0.3],
                                                                                    'yield': [False, 0],
                                                                                    'optimizationBounds': (0, 1)},
                                                                             },
                                                   'lookbackOptimization': 21,
                                                   'objFunction': 'minVariance',
                                                   'tickerCash': inflTicker,
                                                   'rebalancingFrequency': (self.DateRules.WeekStart, minutesAfterStart),
                                                   'optimizationBounds': (0.01, 0.20)},

                           'BuyAndHoldSVOL': {'activate': False,
                                              'tickersWeights': {'CUSTOM_SVOL': 0.0, 'CUSTOM_SPD': 0.0,'TQQQ': 0.13, 'TMF': 0.13, 'BITO': 0.00,
                                                                 'IAU': 0.00, 'DGP': 0, 'BND': 0.74, 'SVXY': 0, 'IEF': 0.00, 'TIP': 0.0,
                                                                 'TLT': 0, 'TYD': 0},
                                              'rebalancingFrequency': (self.DateRules.MonthStart, minutesAfterStart),
                                              'optimizationBounds': (0.30, 0.40)},

                           'VixTermStructure': {'activate': True,
                                               #'tickersWeights': { volatilityTicker: [0.0, 0.0, 0.0, 0.1, 0.6], stocksTicker: [0.5, 0.6, 0.6, 0.5, 0.0], bondsTicker: [0.1, 0.0, 0.0, 0.0, 0.0], inflTicker: [0.4, 0.4, 0.4, 0.4, 0.4]},
                                                'tickersWeights': { volatilityTicker:   [0.00, 0.05, 0.1, 0.4, 1.0, 0.02], 
                                                                    stocksTicker:       [0.80, 0.85, 0.9, 0.6, 0.0, 0.80], 
                                                                    bondsTicker:        [0.20, 0.10, 0.0, 0.0, 0.0, 0.18], 
                                                                    inflTicker:         [0.00, 0.00, 0.0, 0.0, 0.0, 0.00]},
                                                'canaryTicker': 'SPY',
                                                'periodShortSMA': 3,
                                                'periodLongSMA': 15,
                                                'contangoThresholds': [1.25, 0.923],
                                                'rebalancingFrequency': (self.DateRules.EveryDay, minutesAfterStart),
                                                #'optimizationBounds': (0.99, 1.00)},
                                                'optimizationBounds': (0.20, 1.00)},

                           'MovingAverageSPY': {'activate': False,
                                                'tickersWeights': {
                                                                   'TQQQ': [0.14, 0.14, 0.00],
                                                                   'TMF': [0.07, 0.07, 0.07],
                                                                   'IAU': [0.04, 0.04, 0.04],
                                                                   'IEF': [0.35, 0.35, 0.40],
                                                                   'TIP': [0.40, 0.40, 0.49]
                                                                    },
                                                'canaryTicker': 'SPY',
                                                'periodShortSMA': 1,
                                                'periodLongSMA': 168,
                                                'movingAverageThresholds': [1.1, 1.0],
                                                'rebalancingFrequency': (self.DateRules.MonthStart, minutesAfterStart),
                                                'optimizationBounds': (0.01, 1)},

                           'InAndOut': {'activate': True,
                                        'assetsWeights': {'stocksProxy': [stocksTicker, 0.6],
                                                          'bondsProxy': [bondsTicker, 0.4],
                                                          'cashProxy': [cashTicker, 0],
                                                          'inflProxy': [inflTicker, 0],
                                                          'goldProxy': [goldTicker, 0],
                                                          'volatilityProxy': [volatilityTicker, 0]},
                                        'rebalancingFrequency': (self.DateRules.EveryDay, minutesAfterStart),
                                        'optimizationBounds': (0.20, 1.00)},
                                        #'optimizationBounds': (0.99, 1.00)},
                           }

    # if no filtering elements provided, return the whole dictionary
    if alphaName is None and parameter is None:
        return alphaParametersDict

    return alphaParametersDict[alphaName][parameter]

from OptimizerModules.OptimizerClass import PortfolioOptimizer
import pandas as pd
import general_utils as utils


class RotationalOptimizerAlphaCreationModel(AlphaModel):

    def __init__(self, algorithm, name, activateAlpha, parametersDict, rebalancingFrequency,
                 lookbackOptimization, objFunction, tickerCash, treasuryRatesSymbol):

        self.algo = algorithm
        self.Name = name
        self.activateAlpha = activateAlpha
        self.parametersDict = parametersDict
        self.rebalancingFrequency = rebalancingFrequency
        self.lookbackOptimization = lookbackOptimization
        self.objFunction = objFunction
        self.tickerCash = tickerCash
        self.treasuryRatesSymbol = treasuryRatesSymbol
        self.insuranceMonitor = False

        # for yield signal crisis
        self.lookbackNegativeYield = 147  # number of days to lookback for negative values
        self.startCrisisYieldValue = 0.3  # the yield value above which we apply the yield weight condition
        
        # initialize the optimizer
        self.optimizer = PortfolioOptimizer()
            
        # get all the parameters for the indicators
        valuesList = []
        self.alphaTickers = []
        for ticker in parametersDict.keys():
            if parametersDict[ticker]['addTicker'][0]:
                valuesList.append(parametersDict[ticker]['sma'][0])
                valuesList.append(sum(parametersDict[ticker]['macd'][0]))
                
                self.alphaTickers.append(ticker)
                tradableTicker = parametersDict[ticker]['addTicker'][1]
                if tradableTicker != ticker:
                    self.alphaTickers.append(tradableTicker)
        self.alphaTickers.append(self.tickerCash)
        self.alphaTickers.append("UVXY")
        
        # keep the highest parameter provided to call history
        self.lookbackHistory = max(lookbackOptimization, max(valuesList))

        self.weightsDict = {}
        self.timeToEmitInsights = False
        self.atrStocksCrossover = None
        self.atrBondsCrossover = None
        self.weightsRetrieved = False
        self.weekStart = False
        
        # Sudhir changes to code to optimize on start if nothing found in object store. 
        
        if self.algo.LiveMode:
            dictFromOS = utils.ReadFromObjectStore(self.algo, 'RO')
            if dictFromOS:
                self.algo.Log('RO; retrieving last optimal weights from object store: ' + str(dictFromOS))
                self.weightsDict = {self.algo.Symbol(ticker): weight for ticker, weight in dictFromOS.items()}
                self.weightsRetrieved = True
        

    def Update(self, algorithm, data):
        
        insights = []
        
        if not self.timeToEmitInsights:
            return insights
        
        insightExpiry = Expiry.EndOfDay(algorithm.Time)
        
        # loop through insights and send portfolio targets
        for symbol, weight in self.weightsDict.items():
            if symbol.Value.split('_')[0] != 'CUSTOM' and not data.ContainsKey(symbol):
                continue
            if weight > 0:
                insightDirection = InsightDirection.Up
            elif weight < 0:
                insightDirection = InsightDirection.Down
            else:
                insightDirection = InsightDirection.Flat
                
            insights.append(Insight.Price(symbol, insightExpiry, insightDirection, None, None, None, abs(weight)))
                            
        self.timeToEmitInsights = False
        
        return insights

    def GenerateSignals(self):

        """ Create new signals """

        if not self.activateAlpha:
            return
        
        # get active symbols for this alpha
        symbols = [x.Symbol for x in self.algo.ActiveSecurities.Values if x.Symbol.Value in self.alphaTickers]

        # determine target percent for the given insights (check function DetermineTargetPercent for details)
        self.weightsDict = self.DetermineTargetPercent(self.algo, symbols)
        #self.AdjustWeightsForInsurance()
        
        self.timeToEmitInsights = True

        if self.algo.LiveMode or self.algo.BackTestWarmUp == True:
            dictToOS = {symbol.Value: weight for symbol, weight in self.weightsDict.items()}
            utils.SaveToObjectStore(self.algo, 'RO', dictToOS)
            

    def CheckCrossoverATR(self):
        
        if self.weightsRetrieved == True: 
            self.weightsRetrieved = False
            self.timeToEmitInsights = True
            
        """ Check if there was an ATR Crossover to trigger GenerateSignals """
        
        if (self.atrStocksCrossover is not None and self.atrBondsCrossover is not None
                and (self.atrStocksCrossover.Current.Value > 1.5 or self.atrBondsCrossover.Current.Value > 1.5) # ):
                and (self.weekStart)):
            self.algo.Log('RO; triggering GenerateSignals due to ATR Crossover')
            self.GenerateSignals()
            
        if self.algo.isRiskHighest or self.algo.isRiskHigh or self.insuranceMonitor == True:
            self.algo.Log('RO; triggering GenerateSignals due to High Risk flag')
            #self.GenerateSignals()
            self.AdjustWeightsForInsurance()
            
        self.weekStart = False
               
    
    def AdjustWeightsForInsurance(self):
        cashWeight = 0
        if self.algo.isRiskHighest:
            insurancePercentage = 0.20
            self.insuranceMonitor = True
        elif self.algo.isRiskHigh:
            insurancePercentage = 0.02
            self.insuranceMonitor = True
        else:
            insurancePercentage = 0
            self.insuranceMonitor = False
            
        #if self.algo.isRiskHighest or self.algo.isRiskHigh:
        #    for symbol, weight in self.weightsDict.items():
        #        if symbol.Value == self.tickerCash or symbol.Value == "UVXY":
        #            cashWeight = cashWeight + self.weightsDict[symbol]
        #    for symbol, weight in self.weightsDict.items():
        #        if symbol.Value == self.tickerCash:
        #            self.weightsDict[symbol] = cashWeight*(1 - insurancePercentage)
        #        if symbol.Value == "UVXY":
        #            self.weightsDict[symbol] = cashWeight*insurancePercentage
        #    self.timeToEmitInsights = True
        
        if self.algo.isRiskHighest or self.algo.isRiskHigh:
            for symbol, weight in self.weightsDict.items():
                if symbol.Value == "UVXY":
                    self.weightsDict[symbol] = insurancePercentage
                else:
                    self.weightsDict[symbol] = self.weightsDict[symbol]*(1-insurancePercentage)
            self.timeToEmitInsights = True
        
            

    def OnWeekStart(self):
        self.weekStart = True
    
    def OnSecuritiesChanged(self, algorithm, changes):

        """ Actions to take every time the universe changes """

        for security in changes.AddedSecurities:
            if security.Symbol.Value == 'SPY':
                symbol = security.Symbol
                algorithm.Schedule.On(self.rebalancingFrequency[0](symbol),
                                      algorithm.TimeRules.AfterMarketOpen(symbol, self.rebalancingFrequency[1]),
                                      self.GenerateSignals)
                algorithm.Schedule.On(algorithm.DateRules.EveryDay(symbol),
                                      algorithm.TimeRules.AfterMarketOpen(symbol, self.rebalancingFrequency[1]),
                                      self.CheckCrossoverATR)
                algorithm.Schedule.On(algorithm.DateRules.WeekStart(symbol),
                                      algorithm.TimeRules.AfterMarketOpen(symbol, 1), self.OnWeekStart)

            # initialize atr indicators
            if self.activateAlpha and security.Symbol.Value in ['SPY', 'TLT']:
                shortATR = algorithm.ATR(security.Symbol, 10, Resolution.Hour)
                longATR = algorithm.ATR(security.Symbol, 63, Resolution.Hour)
                if security.Symbol.Value == 'SPY':
                    self.atrStocksCrossover = IndicatorExtensions.Over(shortATR, longATR)
                elif security.Symbol.Value == 'TLT':
                    self.atrBondsCrossover = IndicatorExtensions.Over(shortATR, longATR)
                                                             
    def DetermineTargetPercent(self, algorithm, symbols):
        
        """
        Description:
            Determine the target percent for each insight
        Args:
            algorithm: The algorithm instance
            symbols: The symbols to generate an insight for
        """
        
        # empty dictionary to store portfolio targets by symbol
        finalWeights = {}

        # get symbols for calculations
        calculationSymbols = [x for x in symbols if x.Value in self.parametersDict.keys()]
        
        # get historical data for calculationSymbols for the last n trading days
        history = algorithm.History(calculationSymbols, self.lookbackHistory, Resolution.Daily)
        
        # empty dictionary for calculations
        calculations = {}
        
        # iterate over all symbols and perform calculations
        for symbol in calculationSymbols:
            # check if we have enough historical data, otherwise just skip this security
            if not utils.CheckHistory(symbol, history):
                algorithm.Log(str(symbol.Value) + ': skipping security due to no/not enough historical data')
                continue
            else:
                # add symbol to calculations
                calculations[symbol] = SymbolData(symbol, parametersDict=self.parametersDict)
                try:
                    # get series of daily returns
                    calculations[symbol].CalculateDailyReturnSeries(history, self.lookbackOptimization)
                    # update technical indicators
                    calculations[symbol].UpdateIndicators(history)
                except BaseException as e:
                    algorithm.Log('returning empty weights for now for: ' + str(symbol.Value)
                                  + 'due to ' + str(e) + '; we will try again at the next iteration')
                    return finalWeights
        
        # calculate optimal weights
        optWeights = self.CalculateOptimalWeights(algorithm, calculations)
        algorithm.Log('optimal weights for the period: ' + str(optWeights))
        
        if optWeights is None:
            algorithm.Log('returning empty weights due to optWeights being None; we will try again at the next iteration')
            return finalWeights
        
        # modify optimal weights using specific criteria
        finalWeights = self.FilterOptimalWeights(algorithm, calculations, optWeights)
        algorithm.Log('filtered optimal weights for the period: ' + str({symbol.Value: weight
                                                                         for symbol, weight in finalWeights.items()}))
        
        # check if we can trade the tradable symbol, otherwise we trade the original ticker
        replaceSymbol = {}
        for symbol in finalWeights:
            tradableTicker = self.parametersDict[symbol.Value]['addTicker'][1]
            if symbol.Value != tradableTicker:
                tradableSymbol = algorithm.Symbol(tradableTicker)
                # check if the price of tradableSymbol is not zero
                if algorithm.Securities[tradableSymbol].Price != 0:
                    # we trade the original ticker
                    replaceSymbol[tradableSymbol] = symbol
        for newSymbol, replacedSymbol in replaceSymbol.items():
            finalWeights[newSymbol] = finalWeights[replacedSymbol]
            finalWeights.pop(replacedSymbol)
                
        # check how much we have allocated so far to risky assets
        totalWeight = sum(finalWeights.values())
        if totalWeight >= 1:
            totalWeight = 1
        algorithm.Log('total allocation after weight filtering: ' + str(totalWeight))
        
        if self.algo.isRiskHighest:
            volatilityWeight = 0.0
        else:
            volatilityWeight = 0.0
        
        # allocate remaining cash to tickerCash
        for symbol in symbols:
            if symbol.Value == 'UVXY':
                finalWeights[symbol] = volatilityWeight
            if symbol.Value == self.tickerCash:
                if symbol in finalWeights.keys():
                    finalWeights[symbol] = finalWeights[symbol] + (1 - totalWeight - volatilityWeight)
                else:
                    finalWeights[symbol] = 1 - totalWeight - volatilityWeight
                    
                algorithm.Log(str(self.tickerCash) + '; final allocation for tickerCash: ' + str(finalWeights[symbol]))
                
        # avoid very small numbers and make them 0
        for symbol, weight in finalWeights.items():
            if weight <= 1e-10:
                finalWeights[symbol] = 0
            
        return finalWeights
        
    def CalculateOptimalWeights(self, algorithm, calculations):
        
        """
        Description:
            Calculate the individual weights for each symbol that optimize some given objective function
        Args:
            algorithm: The algorithm instance
            calculations: Dictionary containing calculations for each symbol
        """
                
        # create a dictionary keyed by the symbols in calculations with a pandas.Series as value
        # to create a dataframe of returns
        dailyReturnsDict = {symbol.Value: symbolData.dailyReturnsSeries for symbol, symbolData in calculations.items()}
        dailyReturnsDf = pd.DataFrame(dailyReturnsDict)
        listTickers = list(dailyReturnsDf.columns)
        
        try:
            # portfolio optimizer finds the optimal weights for the given data
            bounds = [self.parametersDict[x]['optimizationBounds'] for x in dailyReturnsDf.columns]
            listOptWeights = self.optimizer.Optimize(objFunction=self.objFunction, dailyReturnsDf=dailyReturnsDf,
                                                     bounds=bounds)
        except BaseException as e:
            algorithm.Log('Optimize failed due to ' + str(e))
            return None
        
        # create dictionary with the optimal weights by symbol
        weights = {listTickers[i]: listOptWeights[i] for i in range(len(listTickers))}
        
        # avoid very small numbers and make them 0
        for ticker, weight in weights.items():
            if weight <= 1e-10:
                weights[ticker] = 0
            
        return weights

    def CheckYieldSignalCrisis(self):

        """ Check the Yield condition """

        yieldSignalCrisis = False

        # get the last six months of historical USTREASURY/YIELD values
        histYield = self.algo.History([self.treasuryRatesSymbol], self.lookbackNegativeYield + 1,
                                      Resolution.Daily).loc[self.treasuryRatesSymbol]
        tenYr = histYield['10 yr'] # get the 10-year yield
        threeMo = histYield['3 mo'] # get the 3-month yield
        tenYrMinusThreeMo = tenYr - threeMo # calculate the difference between the two
        indexNegative = tenYrMinusThreeMo[tenYrMinusThreeMo < 0].head(1).index
        # check if there was actually some negative yield values
        if len(indexNegative) > 0:
            cutOff = indexNegative[0]
            # filter the series for days after that day with negative value
            afterNegative = tenYrMinusThreeMo[tenYrMinusThreeMo.index > cutOff]
            # check if at some point it reached our startCrisisYieldValue
            if len(afterNegative) > 0 and max(afterNegative) > self.startCrisisYieldValue:
                yieldSignalCrisis = True

        return yieldSignalCrisis
        
    def FilterOptimalWeights(self, algorithm, calculations, optWeights):
        
        """
        Description:
            Filter and modify the optimal weights using a combination of technical indicators
        Args:
            algorithm: The algorithm instance
            calculations: Dictionary containing calculations for each symbol
            optWeights: Dictionary with the optimal weights by symbol
        """

        # check for yield signal crisis
        yieldSignalCrisis = self.CheckYieldSignalCrisis()
        
        # empty dictionary to store weights
        weights = {}
        
        # loop through calculations and check conditions for weight filtering ------------------------
        for symbol, symbolData in calculations.items():
            if symbolData.SMA.IsReady and symbolData.MACD.IsReady:
                currentPrice = algorithm.ActiveSecurities[symbol].Price

                # check if sma condition is met and act accordingly ----------------------------------
                smaLowerBoundCondition = self.parametersDict[symbol.Value]['sma'][1][0]
                smaUpperBoundCondition = self.parametersDict[symbol.Value]['sma'][1][1]
                smaConditionWeight = self.parametersDict[symbol.Value]['sma'][2]
                
                algorithm.Log(str(symbol.Value)
                              + '; current price: ' + str(round(currentPrice, 2))
                              + '; SMA: ' + str(round(symbolData.SMA.Current.Value, 2))
                              + '; Price vs SMA: ' + str(round((currentPrice / symbolData.SMA.Current.Value) - 1, 2)))
                
                if (currentPrice <= symbolData.SMA.Current.Value * (1 + smaLowerBoundCondition)
                        or currentPrice >= symbolData.SMA.Current.Value * (1 + smaUpperBoundCondition)):
                    weights[symbol] = min(optWeights[symbol.Value], smaConditionWeight)
                    algorithm.Log(str(symbol.Value)
                                  + '; modifying weight due to sma filtering from '
                                  + str(optWeights[symbol.Value]) + ' to ' + str(weights[symbol]))
                else:
                    weights[symbol] = optWeights[symbol.Value]
                    
                smaModifiedWeight = weights[symbol]
                
                # check if macd condition is met and act accordingly ----------------------------------
                macdCondition = self.parametersDict[symbol.Value]['macd'][1]
                macdConditionWeight = self.parametersDict[symbol.Value]['macd'][2]
                # calculate our macd vs signal score between -1 and 1
                macdMinusSignal = symbolData.MACD.Current.Value - symbolData.MACD.Signal.Current.Value
                macdVsSignalScore = macdMinusSignal / (1 + abs(macdMinusSignal))
                
                algorithm.Log(str(symbol.Value)
                              + '; MACD: ' + str(round(symbolData.MACD.Current.Value, 2))
                              + '; MACD Signal: ' + str(round(symbolData.MACD.Signal.Current.Value, 2))
                              + '; MACD vs Signal Score: ' + str(round(macdVsSignalScore, 2)))
                
                if macdVsSignalScore <= macdCondition:
                    weights[symbol] = min(smaModifiedWeight, macdConditionWeight)
                    algorithm.Log(str(symbol.Value)
                                  + '; modifying weight due to macd filtering from '
                                  + str(smaModifiedWeight) + ' to ' + str(weights[symbol]))
                else:
                    weights[symbol] = smaModifiedWeight
                    
                macdModifiedWeight = weights[symbol]

                # check if yield condition is met and act accordingly ----------------------------------
                activateYield = self.parametersDict[symbol.Value]['yield'][0]
                yieldConditionWeight = self.parametersDict[symbol.Value]['yield'][1]

                if yieldSignalCrisis and activateYield:
                    weights[symbol] = min(macdModifiedWeight, yieldConditionWeight)
                else:
                    weights[symbol] = macdModifiedWeight
                    
            else:
                weights[symbol] = optWeights[symbol.Value]
                algorithm.Log(str(symbol.Value) + '; indicators are not ready so assign optimal weight')

        
        return weights


class SymbolData:
    
    def __init__(self, symbol, parametersDict):
        
        self.Symbol = symbol
        self.dailyReturnsSeries = None
        
        smaPeriod = parametersDict[symbol.Value]['sma'][0]
        self.SMA = SimpleMovingAverage(smaPeriod)
        
        macdFastPeriod = parametersDict[self.Symbol.Value]['macd'][0][0]
        macdSlowPeriod = parametersDict[self.Symbol.Value]['macd'][0][1]
        macdSignalPeriod = parametersDict[self.Symbol.Value]['macd'][0][2]
        self.MACD = MovingAverageConvergenceDivergence(macdFastPeriod, macdSlowPeriod, macdSignalPeriod,
                                                       MovingAverageType.Exponential)
    
    def CalculateDailyReturnSeries(self, history, lookbackOptimization):

        """ Calculate the daily returns series for each security """
        
        tempReturnsSeries = history.loc[str(self.Symbol)]['close'].pct_change(periods=2).dropna()  # 2-day returns
        self.dailyReturnsSeries = tempReturnsSeries[-lookbackOptimization:]
        
    def UpdateIndicators(self, history):

        """ Update the indicators with historical data """
        
        for index, row in history.loc[str(self.Symbol)].iterrows():
            self.SMA.Update(index, row['close'])
            self.MACD.Update(index, row['close'])
from itertools import groupby
from OptimizerModules.OptimizerClass import PortfolioOptimizer
import numpy as np
import pandas as pd
import general_utils as utils


class CompositePortfolioConstructionModel(PortfolioConstructionModel):

    def __init__(self, algorithm, alphaModels, optimizationBounds, alphaPortfolioOptLookback=21,
                 alphaPortfolioOptObjFunction='minVariance'):

        self.algo = algorithm

        self.alphasInsightReturns = {alphaModel: {} for alphaModel in alphaModels}  # nested dict for insight returns
        self.alphasEqualWeighting = 1 / len(self.alphasInsightReturns.keys())

        self.alphasDailyReturns = {alphaModel: {} for alphaModel in alphaModels}  # nested dict for daily returns
        self.alphasCumReturns = {alphaModel: 1 for alphaModel in alphaModels}  # store alphas cumulative returns
        self.alphasLastPeak = {alphaModel: 1 for alphaModel in alphaModels}  # store alphas last peak for DD calc
        self.alphasDD = {alphaModel: 0 for alphaModel in alphaModels}  # store alphas DD
        self.alphasOptWeights = {alphaModel: 0 for alphaModel in alphaModels}  # store alphas optimal allocations
        self.alphasAccuracy = {alphaModel: 0 for alphaModel in alphaModels}  # store alphas accuracy

        self.entryDirection = {alphaModel: {} for alphaModel in alphaModels}  # store alphas insights entry direction
        self.previousPrice = {alphaModel: {} for alphaModel in alphaModels}  # store alphas insights previous price

        # variables for alpha weight optimization
        self.alphaPortfolioOptLookback = alphaPortfolioOptLookback  # number of days for rolling window of returns
        self.alphaPortfolioOptObjFunction = alphaPortfolioOptObjFunction
        self.allowAlphaWeightOptimization = True
        self.optAlphaAllocationReady = False

        self.optimizer = PortfolioOptimizer()
        self.optimizationBounds = optimizationBounds

        self.insightCollection = InsightCollection()
        self.lastActiveInsights = []
        self.removedSymbols = []

        self.portfolioLastValue = 0
        self.portfolioCumReturns = 1
        self.portfolioLastPeak = 1

        self.symbolsWeights = {}

        # retrieve information from object store in live mode
        if self.algo.LiveMode:
            alphasOptWeightsOS = utils.ReadFromObjectStore(self.algo, 'AlphasOptWeights')
            if alphasOptWeightsOS:
                self.alphasOptWeights = alphasOptWeightsOS
                self.optAlphaAllocationReady = True
                self.algo.Log('Portfolio; retrieving alphasOptWeights from object store: ' + str(self.alphasOptWeights))
            alphasDdOS = utils.ReadFromObjectStore(self.algo, 'AlphasDD')
            if alphasDdOS:
                self.alphasDD = alphasDdOS
                self.algo.Log('Portfolio; retrieving alphasDD from object store: ' + str(self.alphasDD))

        algorithm.Schedule.On(algorithm.DateRules.EveryDay(), algorithm.TimeRules.At(0, 1), self.GetTodayDate)
        self.GetTodayDate()

    def CreateTargets(self, algorithm, insights):

        """
        Description:
            Create portfolio targets from the specified insights
        Args:
            algorithm: The algorithm instance
            insights: The insights to create portfolio targets from
        Returns:
            An enumerable of portfolio targets to be sent to the execution model
        """

        targets = []

        # skip if no action to be taken
        if not self.ShouldCreateTargets(algorithm, insights) and self.removedSymbols is None:
            return targets

        # create flatten target for each security that was removed from the universe
        if self.removedSymbols is not None:
            universeDeselectionTargets = [PortfolioTarget(symbol, 0) for symbol in self.removedSymbols]
            algorithm.Log('liquidate any open positions for removed symbols: '
                          + str([x.Value for x in self.removedSymbols]))
            targets.extend(universeDeselectionTargets)
            self.removedSymbols = None

        # add new insights to insight collection
        self.insightCollection.AddRange(insights)

        # more than one alpha model can generate insights for the same symbol
        # we group by alpha model and symbol, and keep the most recent insight
        self.lastActiveInsights = []
        for sourceModel, f in groupby(sorted(self.insightCollection, key=lambda ff: ff.SourceModel),
                                      lambda fff: fff.SourceModel):
            for symbol, g in groupby(sorted(list(f), key=lambda gg: gg.Symbol), lambda ggg: ggg.Symbol):
                self.lastActiveInsights.append(sorted(g, key=lambda x: x.GeneratedTimeUtc)[-1])

        # calculate targets ----------------------------------------------------
        symbolsNewWeights = {}
        for insight in self.lastActiveInsights:
            if insight.Symbol not in algorithm.ActiveSecurities.Keys:
                continue

            # check if we can do optimal alpha allocation and if we have enough data for it
            if self.optAlphaAllocationReady:
                # insight weight * the optimal allocation for the model
                weight = insight.Direction * insight.Weight * self.alphasOptWeights[insight.SourceModel]
            else:
                weight = insight.Direction * insight.Weight * self.alphasEqualWeighting

            # apply leverage
            weight *= self.algo.accountLeverage

            # update returns if we close the position with flat insight
            if (insight.Direction == InsightDirection.Flat
                    and self.entryDirection[insight.SourceModel].get(insight.Symbol) is not None
                    and self.entryDirection[insight.SourceModel].get(insight.Symbol) != 0):
                self.UpdateReturnsDictionaries(algorithm, insight)
                self.entryDirection[insight.SourceModel].pop(insight.Symbol)
                self.previousPrice[insight.SourceModel].pop(insight.Symbol)

            elif insight.Direction != InsightDirection.Flat:
                if (self.entryDirection[insight.SourceModel].get(insight.Symbol) is None
                        and self.previousPrice[insight.SourceModel].get(insight.Symbol) is None):
                    self.entryDirection[insight.SourceModel][insight.Symbol] = insight.Direction
                    # simulate entry price
                    self.previousPrice[insight.SourceModel][insight.Symbol] = algorithm.ActiveSecurities[insight.Symbol].Price
            
            # add weight to weightBySymbol
            if insight.Symbol not in symbolsNewWeights:
                symbolsNewWeights[insight.Symbol] = weight
            else:
                symbolsNewWeights[insight.Symbol] += weight

            algorithm.Log(str(insight.SourceModel) + '; ' + str(insight.Symbol.Value) + '; '
                          + str(insight.Direction) + '; ' + str(round(weight, 2)))

        countWeightChangesAbovethreshold = self.CountWeightChangesAboveThreshold(symbolsNewWeights)
        if countWeightChangesAbovethreshold > 0 or not self.symbolsWeights or self.algo.stopLossTriggered == True:
            self.symbolsWeights = symbolsNewWeights
            self.algo.stopLossTriggered == False
        else:
            return targets
        
        # we add together all the weights for each symbol
        for symbol, finalWeight in self.symbolsWeights.items():
            # calculate the percent target
            target = PortfolioTarget.Percent(algorithm, symbol, finalWeight)
            targets.append(target)
            
            algorithm.Log('final weights; ' + str(symbol.Value) + '; ' + str(round(finalWeight, 2)))

        return targets
    
    def EveryDayAtOpen(self):

        """ Update dictionaries every day at the open """

        # update and plot portfolio cumulative returns
        self.PlotPortfolioInfo()
        
        # update daily returns -------------------------------------------------
        for insight in self.lastActiveInsights:
            if (insight.Symbol not in self.algo.ActiveSecurities.Keys
                    or not self.algo.ActiveSecurities[insight.Symbol].Invested
                    or insight.Direction == InsightDirection.Flat):
                continue
            self.UpdateReturnsDictionaries(self.algo, insight)
            # update previous price
            self.previousPrice[insight.SourceModel][insight.Symbol] = self.algo.ActiveSecurities[insight.Symbol].Price

        # calculate the optimal weights ----------------------------------------
        # create a dataframe of returns of last n days from the dictionary alphasDailyReturns
        dailyReturnsDf = pd.DataFrame(self.alphasDailyReturns)[-self.alphaPortfolioOptLookback:]
        dailyReturnsDf = dailyReturnsDf.dropna()

        # run optimization if needed, otherwise keep using the alphasOptWeights from last optimization
        if self.allowAlphaWeightOptimization:
            # wait until we have at least a week of returns
            if len(dailyReturnsDf) >= 5:
                try:
                    bounds = [self.optimizationBounds[x] for x in dailyReturnsDf.columns]
                    newAlphasOptWeights = self.optimizer.Optimize(objFunction=self.alphaPortfolioOptObjFunction,
                                                                  dailyReturnsDf=dailyReturnsDf, bounds=bounds)
                    self.alphasOptWeights = pd.Series(newAlphasOptWeights, index=dailyReturnsDf.columns).to_dict()
                    
                    # Add left-over allocation to default alpha
                    leftoverallocation = max(0,1 - sum(self.alphasOptWeights.values()))
                    if leftoverallocation !=0:
                        self.alphasOptWeights['RotationalOptimizer1x'] = self.alphasOptWeights['RotationalOptimizer1x'] + leftoverallocation
                    
                    self.allowAlphaWeightOptimization = False
                    self.algo.Log('optimal weights for alphas: ' + '\n' + str(newAlphasOptWeights))
                except BaseException as e:
                    self.algo.Log('Optimize failed due to ' + str(e))

        # check if all alphas have been optimized and have positive weights
        self.optAlphaAllocationReady = False
        if all(x > 0 for x in self.alphasOptWeights.values()):
            self.optAlphaAllocationReady = True

        # for each alpha model -------------------------------------------------
        for key in self.alphasInsightReturns:
            # update the cumulative returns for each alpha model and plot it
            filteredDailyReturns = pd.DataFrame.from_dict({key: value
                                                           for key, value in self.alphasDailyReturns[key].items()
                                                           if not np.isnan(value)}, orient='index')
            self.alphasCumReturns[key] = (filteredDailyReturns.add(1).cumprod().iloc[-1]
                                          if not filteredDailyReturns.empty else pd.Series(1))[0]
            self.algo.Plot('Alphas Cumulative Returns (%)', key, float((self.alphasCumReturns[key] - 1) * 100))

            # update DD for each alpha and plot it
            if self.alphasCumReturns[key] > self.alphasLastPeak[key]:
                self.alphasLastPeak[key] = self.alphasCumReturns[key]
            self.alphasDD[key] = (self.alphasCumReturns[key] / self.alphasLastPeak[key]) - 1
            self.algo.Plot('Alphas DD (%)', key, float(self.alphasDD[key]) * 100)

            # get the optimal allocation per alpha and plot it
            if self.optAlphaAllocationReady:
                self.algo.Plot('Alphas Allocation (%)', key, float(self.alphasOptWeights[key] * 100))
            else:
                self.algo.Plot('Alphas Allocation (%)', key, float(self.alphasEqualWeighting * 100))

            # calculate the accuracy per model for last n insights and plot it
            # these are the individual returns of last n insights
            # (we're using lookback times X, assuming X insights per day)
            #flatReturns = [val for sublist in self.alphasInsightReturns[key].values()
            #               for val in sublist][-(self.alphaPortfolioOptLookback * 5):]
            #if len(flatReturns) > 0:
            #    self.alphasAccuracy[key] = sum(x > 0 for x in flatReturns) / len(flatReturns)
            #    self.algo.Plot('Alphas Accuracy (% of Positive Days)', key, float(self.alphasAccuracy[key] * 100))

        if self.algo.LiveMode or self.algo.BackTestWarmUp == True:
            utils.SaveToObjectStore(self.algo, 'AlphasOptWeights', self.alphasOptWeights)
            utils.SaveToObjectStore(self.algo, 'AlphasDD', self.alphasDD)

    def TriggerAlphaWeightOptimization(self):

        """ Allow alpha weight optimization to happen  """

        self.allowAlphaWeightOptimization = True
        
    def OnSecuritiesChanged(self, algorithm, changes):

        """ Actions to take every time the universe changes """
        
        # get removed symbol and invalidate them in the insight collection
        self.removedSymbols = [x.Symbol for x in changes.RemovedSecurities]
        self.insightCollection.Clear(self.removedSymbols)

        for security in changes.AddedSecurities:
            if security.Symbol.Value == 'SPY':
                symbol = security.Symbol
                algorithm.Schedule.On(algorithm.DateRules.EveryDay(symbol),
                                      algorithm.TimeRules.AfterMarketOpen(symbol, 120),
                                      self.EveryDayAtOpen)
                algorithm.Schedule.On(algorithm.DateRules.MonthStart(symbol),
                                      algorithm.TimeRules.AfterMarketOpen(symbol, 1),
                                      self.TriggerAlphaWeightOptimization)

    def ShouldCreateTargets(self, algorithm, insights):

        """
        Description:
            Determine whether we should rebalance the portfolio when:
                - We want to include some new security in the portfolio
                - We want to modify the direction of some existing security
        Args:
            insights: The last set of insights sent
        """
                    
        for insight in insights:
            if not algorithm.Portfolio[insight.Symbol].Invested and insight.Direction != InsightDirection.Flat:
                return True
            elif algorithm.Portfolio[insight.Symbol].Invested:
                return True

        return False

    def CalculateInsightReturn(self, algorithm, insight):

        """ Calculate the returns from the insights of each model as if 100% was invested in the model,
        with daily rebalancing """
        
        insightReturn = 0

        if (algorithm.ActiveSecurities[insight.Symbol].Price != 0
                and self.entryDirection[insight.SourceModel].get(insight.Symbol) is not None
                and self.previousPrice[insight.SourceModel].get(insight.Symbol) is not None):

            previousPrice = self.previousPrice[insight.SourceModel][insight.Symbol]
            currentPrice = algorithm.ActiveSecurities[insight.Symbol].Price
            entryDirection = self.entryDirection[insight.SourceModel][insight.Symbol]
            weight = insight.Weight * self.algo.accountLeverage

            # return the insight return (weight-adjusted)
            insightReturn = entryDirection * (currentPrice / previousPrice - 1) * weight
            
        return insightReturn

    def UpdateReturnsDictionaries(self, algorithm, insight):

        """ Update alphasInsightReturns and alphasDailyReturns """

        # calculate the insight return
        insightReturn = self.CalculateInsightReturn(algorithm, insight)
        # append the dictionary of insight returns by model
        self.alphasInsightReturns[insight.SourceModel][self.todayDate].append(insightReturn)
        # update the dictionary of daily returns by model
        self.alphasDailyReturns[insight.SourceModel][self.todayDate] = sum(self.alphasInsightReturns[insight.SourceModel][self.todayDate])

    def CountWeightChangesAboveThreshold(self, symbolsNewWeights, threshold=0.03):

        """ Check how many new targets deviate enough from current targets """

        # calculate the change in new weights vs current weights
        weightChanges = [abs(symbolsNewWeights[symbol] - weight) for symbol, weight in self.symbolsWeights.items()]
        # count how many are above a certain threshold
        countWeightChangesAbovethreshold = sum(x for x in weightChanges if x > threshold)

        return countWeightChangesAbovethreshold

    def PlotPortfolioInfo(self):

        """ Update and plot the portfolio cumulative returns and DD """

        if self.portfolioLastValue == 0:
            self.portfolioLastValue = self.algo.Portfolio.TotalPortfolioValue

        # update and plot portfolio cumulative returns
        currentPortfolioValue = self.algo.Portfolio.TotalPortfolioValue
        portfolioDailyReturn = currentPortfolioValue / self.portfolioLastValue - 1
        self.portfolioCumReturns *= (1 + portfolioDailyReturn)
        self.algo.Plot('Alphas Cumulative Returns (%)', 'Portfolio', float((self.portfolioCumReturns - 1) * 100))

        # update and plot portfolio DD
        if self.portfolioCumReturns > self.portfolioLastPeak:
            self.portfolioLastPeak = self.portfolioCumReturns
        currentPortfolioDD = (self.portfolioCumReturns / self.portfolioLastPeak) - 1
        self.algo.Plot('Alphas DD (%)', 'Portfolio', float(currentPortfolioDD) * 100)

        self.portfolioLastValue = self.algo.Portfolio.TotalPortfolioValue

    def GetTodayDate(self):

        """ Get today date and update relevant dictionaries """

        # get today date for reference
        self.todayDate = datetime(self.algo.Time.year, self.algo.Time.month, self.algo.Time.day).date()

        # initialize today empty list for alphas insight returns and daily returns
        for key in self.alphasInsightReturns:
            self.alphasInsightReturns[key][self.todayDate] = []
            self.alphasDailyReturns[key][self.todayDate] = np.nan
import numpy as np
from scipy.optimize import minimize


class PortfolioOptimizer:

    """
    Description:
        Implementation of a custom optimizer that calculates the weights for each asset to optimize a given objective function

    Details:
        Optimization can be:
            - Equal Weighting
            - Maximize Portfolio Return
            - Minimize Portfolio Standard Deviation
            - Maximize Portfolio Sharpe Ratio
            - Maximize Portfolio Sortino Ratio
            - Risk Parity Portfolio
            - Target Return (minimize Standard Deviation given a min target return)
            - Target Variance (maximize Return given a max target variance)
            - Target Variance Negative Returns (maximize Return given a max target variance during negative returns)

        Constraints:
            - Weights must be between some given boundaries
            - Weights must sum to 1
    """

    def __init__(self):

        """ Initialize the CustomPortfolioOptimizer """

        self.targetReturn = 0.1
        self.targetVariance = 0.15

    def Optimize(self, objFunction, dailyReturnsDf, bounds):

        """
        Description:
            Perform portfolio optimization given a series of returns
        Args:
            objFunction: The objective function to optimize (equalWeighting, maxReturn, minVariance,
                                                            maxSharpe, maxSortino, riskParity, targetReturn,
                                                            targetVariance, targetVarianceNegativeReturns)
            dailyReturnsDf: DataFrame of historical daily arithmetic returns
            bounds: List of tuples with the min and max weights for each element
        Returns:
            Array of double with the portfolio weights (size: K x 1)
        """

        # initial weights: equally weighted
        size = dailyReturnsDf.columns.size  # K x 1
        self.initWeights = np.array(size * [1. / size])

        # get sample covariance matrix
        covariance = dailyReturnsDf.cov()
        # get the sample covariance matrix of only negative returns for sortino ratio
        negativeReturnsDf = dailyReturnsDf[dailyReturnsDf < 0]
        covarianceNegativeReturns = negativeReturnsDf.cov()

        if objFunction == 'equalWeighting':
            return self.initWeights

        # create constraints
        constraints = {'type': 'eq', 'fun': lambda x: np.sum(x) - 1.0}

        if objFunction == 'targetReturn':
            constraints.update({'type': 'eq', 'fun': lambda weights: self.CalculateAnnualizedPortfolioReturn(dailyReturnsDf,
                                            weights) - self.targetReturn}, {'type': 'eq', 'fun': lambda x: np.sum(x) - 1.0})
        if objFunction == 'targetVariance':
            constraints = ({'type': 'ineq', 'fun': lambda weights: self.targetVariance - self.CalculateAnnualizedPortfolioStd(covariance, weights)}, 
                            {'type': 'ineq', 'fun': lambda x: 1.0 - np.sum(x)} )
        if objFunction == 'targetVarianceNegativeReturns':
            constraints = ({'type': 'ineq', 'fun': lambda weights: self.targetVariance - self.CalculateAnnualizedPortfolioNegativeStd(covarianceNegativeReturns, weights)}, 
                            {'type': 'ineq', 'fun': lambda x: 1.0 - np.sum(x)} )
                            
                            
        opt = minimize(lambda weights: self.ObjectiveFunction(objFunction, dailyReturnsDf,
                                                                covariance, covarianceNegativeReturns,
                                                                weights),
                       x0=self.initWeights,
                       bounds=bounds,
                       constraints=constraints,
                       method='SLSQP')

        return opt['x']

    def ObjectiveFunction(self, objFunction, dailyReturnsDf, covariance, covarianceNegativeReturns, weights):

        """
        Description:
            Compute the objective function
        Args:
            objFunction: The objective function to optimize (equalWeighting, maxReturn, minVariance, meanVariance,
                                                            maxSharpe, maxSortino, riskParity)
            dailyReturnsDf: DataFrame of historical daily returns
            covariance: Sample covariance
            covarianceNegativeReturns: Sample covariance matrix of only negative returns
            weights: Portfolio weights
        """

        if objFunction == 'maxReturn':
            f = self.CalculateAnnualizedPortfolioReturn(dailyReturnsDf, weights)
            return -f  # convert to negative to be maximized

        elif objFunction == 'minVariance':
            f = self.CalculateAnnualizedPortfolioStd(covariance, weights)
            return f

        elif objFunction == 'maxSharpe':
            f = self.CalculateAnnualizedPortfolioSharpeRatio(dailyReturnsDf, covariance, weights)
            return -f  # convert to negative to be maximized

        elif objFunction == 'maxSortino':
            f = self.CalculateAnnualizedPortfolioSortinoRatio(dailyReturnsDf, covarianceNegativeReturns, weights)
            return -f  # convert to negative to be maximized

        elif objFunction == 'riskParity':
            f = self.CalculateRiskParityFunction(covariance, weights)
            return f

        elif objFunction == 'targetReturn':
            f = self.CalculateAnnualizedPortfolioStd(covariance, weights)
            return f

        elif objFunction in ['targetVariance', 'targetVarianceNegativeReturns']:
            f = self.CalculateAnnualizedPortfolioReturn(dailyReturnsDf, weights)
            return -f  # convert to negative to be maximized

        else:
            raise ValueError(f'PortfolioOptimizer.ObjectiveFunction: objFunction input has to be one of equalWeighting,'
                             + ' maxReturn, minVariance, maxSharpe, maxSortino, riskParity, targetReturn,'
                             + ' targetVariance', 'targetVarianceNegativeReturns')

    def CalculateAnnualizedPortfolioReturn(self, dailyReturnsDf, weights):

        annualizedPortfolioReturns = np.sum(((1 + dailyReturnsDf.mean())**252 - 1) * weights)
        return annualizedPortfolioReturns

    def CalculateAnnualizedPortfolioStd(self, covariance, weights):

        annualizedPortfolioStd = np.sqrt( np.dot(weights.T, np.dot(covariance * 252, weights)) )
        if annualizedPortfolioStd == 0:
            raise ValueError(f'PortfolioOptimizer.CalculateAnnualizedPortfolioStd: annualizedPortfolioStd cannot be zero. Weights: {weights}')

        return annualizedPortfolioStd

    def CalculateAnnualizedPortfolioNegativeStd(self, covarianceNegativeReturns, weights):

        annualizedPortfolioNegativeStd = np.sqrt(np.dot(weights.T, np.dot(covarianceNegativeReturns * 252, weights)))
        if annualizedPortfolioNegativeStd == 0:
            raise ValueError(f'PortfolioOptimizer.CalculateAnnualizedPortfolioNegativeStd: annualizedPortfolioNegativeStd cannot be zero. Weights: {weights}')

        return annualizedPortfolioNegativeStd

    def CalculateAnnualizedPortfolioSharpeRatio(self, dailyReturnsDf, covariance, weights):

        annualizedPortfolioReturn = self.CalculateAnnualizedPortfolioReturn(dailyReturnsDf, weights)
        annualizedPortfolioStd = self.CalculateAnnualizedPortfolioStd(covariance, weights)
        annualizedPortfolioSharpeRatio = annualizedPortfolioReturn / annualizedPortfolioStd

        return annualizedPortfolioSharpeRatio

    def CalculateAnnualizedPortfolioSortinoRatio(self, dailyReturnsDf, covarianceNegativeReturns, weights):

        annualizedPortfolioReturn = self.CalculateAnnualizedPortfolioReturn(dailyReturnsDf, weights)
        annualizedPortfolioNegativeStd = self.CalculateAnnualizedPortfolioNegativeStd(covarianceNegativeReturns, weights)
        annualizedPortfolioSortinoRatio = annualizedPortfolioReturn / annualizedPortfolioNegativeStd

        return annualizedPortfolioSortinoRatio

    def CalculateRiskParityFunction(self, covariance, weights):

        """ Spinu formulation for risk parity portfolio """

        assetsRiskBudget = self.initWeights
        portfolioVolatility = self.CalculateAnnualizedPortfolioStd(covariance, weights)
        x = weights / portfolioVolatility
        riskParity = (np.dot(x.T, np.dot(covariance, x)) / 2) - np.dot(assetsRiskBudget.T, np.log(x))

        return riskParity
from clr import AddReference

AddReference("System")
AddReference("QuantConnect.Common")
AddReference("QuantConnect.Algorithm.Framework")

from System import *
from QuantConnect import *
from QuantConnect.Algorithm import *
from QuantConnect.Algorithm.Framework import *
from Selection.FundamentalUniverseSelectionModel import FundamentalUniverseSelectionModel


class PriceVolumeUniverseSelectionModel(FundamentalUniverseSelectionModel):

    def __init__(self,
                 minPrice=20,
                 nStocks=500,
                 filterFineData=False,
                 universeSettings=None):

        super().__init__(filterFineData, universeSettings)

        self.minPrice = minPrice  # min price for stock selection
        self.nStocks = nStocks  # number of stocks to select in universe

    def SelectCoarse(self, algorithm, coarse):

        """ Perform coarse selection based on price and dollar volume """

        # filter universe to select only stocks with price above
        preFiltered = [x for x in coarse if x.HasFundamentalData and x.Price > self.minPrice]

        # sort the tickers by criteria and take the top candidates by dollar volume
        topDollarVolume = sorted(preFiltered, key=lambda x: x.DollarVolume, reverse=True)[:self.nStocks]
        topDollarVolumeSymbols = [x.Symbol for x in topDollarVolume]

        return topDollarVolumeSymbols
class InAndOutAlphaCreationModel(AlphaModel):

    def __init__(self, algorithm, name, activateAlpha, assetsWeights, rebalancingFrequency):

        self.algo = algorithm
        self.Name = name
        self.activateAlpha = activateAlpha
        self.assetsWeights = assetsWeights
        self.rebalancingFrequency = rebalancingFrequency

        self.weightsDict = {}
        self.timeToEmitInsights = False
        self.WeekEndIsHere = False
        self.weightsRetrieved = False
        self.previousVolatilityAllocation = 0

        # market and list of signals based on ETFs
        self.signalInstruments = {'PRDC': ['XLI', None], 'METL': ['DBB', None], 'NRES': ['IGE', None],
                                  'DEBT': ['SHY', None], 'USDX': ['UUP', None], 'GOLD': ['GLD', None],
                                  'SLVA': ['SLV', None], 'UTIL': ['XLU', None], 'SHCU': ['FXF', None],
                                  'RICU': ['FXA', None], 'INDU': ['XLI', None], 'MRKT': ['QQQ', None],
                                  'TLT': ['TLT', None], 'QQQ': ['QQQ', None], 'SPY': ['SPY', None]}
        for signal, tickerSymbol in self.signalInstruments.items():
            self.signalInstruments[signal][1] = self.algo.AddEquity(tickerSymbol[0], Resolution.Hour).Symbol
        self.smaSPY = self.algo.SMA(self.signalInstruments['SPY'][1], 231, Resolution.Daily)
        self.smaTLT = self.algo.SMA(self.signalInstruments['TLT'][1], 21, Resolution.Daily)
        self.smaGLD = self.algo.SMA(self.signalInstruments['GOLD'][1], 21, Resolution.Daily)

        self.signalSymbols = [self.signalInstruments['PRDC'][1], self.signalInstruments['METL'][1],
                              self.signalInstruments['NRES'][1], self.signalInstruments['USDX'][1],
                              self.signalInstruments['DEBT'][1], self.signalInstruments['MRKT'][1]]
        self.forPairs = [self.signalInstruments['GOLD'][1], self.signalInstruments['SLVA'][1],
                         self.signalInstruments['UTIL'][1], self.signalInstruments['INDU'][1]]
        self.pairList = ['G_S', 'U_I']

        # initialize constants and variables
        # [out for 3 trading weeks, set period for returns sample,
        # 'in'/'out' indicator, count of total days since start,
        # daysCount when self.beIn=0, portfolio value]
        self.initWaitDays, self.lookback, self.beIn, self.daysCount, self.outDay = [15, 252 * 5, True, 0, 0]

        # create symbols list
        self.symbols = list(set(self.signalSymbols + [self.signalInstruments['MRKT'][1]]
                                + self.forPairs + [self.signalInstruments['QQQ'][1]]))

        # retrieve information from object store in live mode
        if self.algo.LiveMode:
            dictFromOS = utils.ReadFromObjectStore(self.algo, 'IO')
            if 'daysCount' in dictFromOS and 'outDay' in dictFromOS:
                self.algo.Log('IO; retrieving variable states from object store; daysCount: '
                              + str(dictFromOS['daysCount']) + '; outDay: ' + str(dictFromOS['outDay']))
                self.daysCount, self.outDay = [dictFromOS['daysCount'], dictFromOS['outDay']]
                self.weightsRetrieved = True

    def Update(self, algorithm, data):

        insights = []

        if not self.timeToEmitInsights:
            return insights

        insightExpiry = Expiry.EndOfDay(algorithm.Time)

        # loop through insights and send portfolio targets
        for symbol, weight in self.weightsDict.items():
            if symbol.Value.split('_')[0] != 'CUSTOM' and not data.ContainsKey(symbol):
                continue
            if weight > 0:
                insightDirection = InsightDirection.Up
            elif weight < 0:
                insightDirection = InsightDirection.Down
            else:
                insightDirection = InsightDirection.Flat

            insights.append(Insight.Price(symbol, insightExpiry, insightDirection, None, None, None, abs(weight)))

        self.timeToEmitInsights = False

        return insights

    def GenerateSignals(self):

        """ Create new signals """

        if not self.activateAlpha:
            return

        # get historical data
        latestHistory, latestHistoryShifted = self.GetHistoricalData()

        # returns sample to detect extreme observations
        returnsSample = (latestHistory / latestHistoryShifted) - 1
        # Reverse code USDX: sort largest changes to bottom
        returnsSample[self.signalInstruments['USDX'][1]] = returnsSample[self.signalInstruments['USDX'][1]] * -1
        # for pairs, take returns differential, reverse coded
        returnsSample['G_S'] = -(returnsSample[self.signalInstruments['GOLD'][1]] - returnsSample[self.signalInstruments['SLVA'][1]])
        returnsSample['U_I'] = -(returnsSample[self.signalInstruments['UTIL'][1]] - returnsSample[self.signalInstruments['INDU'][1]])

        # extreme observations; statistical significance = 5%
        extremeB = returnsSample.iloc[-1] < np.nanpercentile(returnsSample, 5, axis=0)

        # re-assess/disambiguate double-edged signals
        aboveMedian = returnsSample.iloc[-1] > np.nanmedian(returnsSample, axis=0)
        # interest rate expectations (cost of debt) may increase because the economic outlook improves
        # (showing in rising input prices) = actually not a negative signal
        extremeB.loc[self.signalInstruments['DEBT'][1]] = np.where((extremeB.loc[self.signalInstruments['DEBT'][1]].any())
                                                                   & (aboveMedian[[self.signalInstruments['METL'][1],
                                                                                   self.signalInstruments['NRES'][1]]].any()),
                                                                   False, extremeB.loc[self.signalInstruments['DEBT'][1]])
        # determine whether 'in' or 'out' of the market
        if (extremeB[self.signalSymbols + self.pairList]).any():
            self.beIn = False
            self.outDay = self.daysCount
        if self.daysCount >= self.outDay + self.initWaitDays:
            self.beIn = True
            
        if self.algo.Securities[self.signalInstruments['GOLD'][1]].Price != 0 and self.smaGLD.Current.Value != 0:
            self.algo.TLTorGLD = (self.algo.Securities[self.signalInstruments['TLT'][1]].Price / self.algo.Securities[self.signalInstruments['GOLD'][1]].Price) > (self.smaTLT.Current.Value/ self.smaGLD.Current.Value)
        else:
            self.algo.TLTorGLD = True
            
        if not self.beIn:
            self.assetsWeights['stocksProxy'][1] = 0
            self.assetsWeights['volatilityProxy'][1] = 0.0
            if self.algo.TLTorGLD:
                self.assetsWeights['bondsProxy'][1] = 1.0
                self.assetsWeights['cashProxy'][1] = 0
                self.assetsWeights['inflProxy'][1] = 0.0
            else:
                self.assetsWeights['bondsProxy'][1] = 0.0
                self.assetsWeights['cashProxy'][1] = 0.0
                self.assetsWeights['inflProxy'][1] = 1.0

        if self.WeekEndIsHere or self.weightsRetrieved == True: # or volatilityAllocationChanged:
            self.WeekEndIsHere = False
            self.weightsRetrieved = False
            if self.beIn:
                #if self.algo.Securities[self.signalInstruments['SPY'][1]].Price > self.smaSPY.Current.Value:
                #    self.assetsWeights['stocksProxy'][1] = 0.0 + (volatilityMax - self.assetsWeights['volatilityProxy'][1]) - 0.0
                #else:
                self.assetsWeights['stocksProxy'][1] = 0.8
                self.assetsWeights['bondsProxy'][1] = 0.0
                self.assetsWeights['cashProxy'][1] = 0.0
                self.assetsWeights['inflProxy'][1] = 0.2
                self.assetsWeights['volatilityProxy'][1] = 0.0

        volatilityMax = 0.9
        volatilityAllocation = 0
        if self.algo.isRiskHighest == True:
            volatilityAllocation = volatilityMax
        elif self.algo.isRiskHigh == True:
            volatilityAllocation = volatilityMax*0.40
        else:
            volatilityAllocation = 0
        
        if self.previousVolatilityAllocation != volatilityAllocation or self.algo.stopLossTriggered:
            volatilityAllocationChanged = True
        else:
            volatilityAllocationChanged = False
        self.previousVolatilityAllocation = volatilityAllocation
        
        if volatilityAllocationChanged:
            self.assetsWeights['volatilityProxy'][1] = volatilityAllocation
            self.assetsWeights['bondsProxy'][1] =  self.assetsWeights['bondsProxy'][1]*(1- volatilityAllocation)
            self.assetsWeights['cashProxy'][1] = self.assetsWeights['cashProxy'][1]*(1- volatilityAllocation)
            self.assetsWeights['stocksProxy'][1] = self.assetsWeights['stocksProxy'][1]*(1- volatilityAllocation)
            self.assetsWeights['inflProxy'][1] = self.assetsWeights['inflProxy'][1]*(1- volatilityAllocation)
        
        
        # update the weightsDict
        for proxy, symbolWeight in self.assetsWeights.items():
            self.weightsDict[symbolWeight[0]] = symbolWeight[1]

        self.daysCount += 1
        self.timeToEmitInsights = True

        if self.algo.LiveMode or self.algo.BackTestWarmUp == True:
            dictToOS = {'daysCount': self.daysCount, 'outDay': self.outDay}
            utils.SaveToObjectStore(self.algo, 'IO', dictToOS)
            
        self.algo.Log('InOut : ' + str(self.beIn))
        self.algo.Log('InOut Weights - SBC : ' + str(round(self.assetsWeights['stocksProxy'][1], 2))
                      + "|" + str(round(self.assetsWeights['bondsProxy'][1], 2))
                      + "|" + str(round(self.assetsWeights['cashProxy'][1], 2))
                      + "|" + str(round(self.assetsWeights['volatilityProxy'][1], 2)))

    def WeekEnd(self):
        self.WeekEndIsHere = True
    
    def OnSecuritiesChanged(self, algorithm, changes):

        """ Actions to take every time the universe changes """

        for security in changes.AddedSecurities:
            if security.Symbol.Value == 'SPY':
                symbol = security.Symbol
                algorithm.Schedule.On(self.rebalancingFrequency[0](symbol),
                                      algorithm.TimeRules.AfterMarketOpen(symbol, self.rebalancingFrequency[1]),
                                      self.GenerateSignals)
                algorithm.Schedule.On(algorithm.DateRules.WeekEnd(symbol),
                                      algorithm.TimeRules.AfterMarketOpen(symbol, 1),
                                      self.WeekEnd)

    def GetHistoricalData(self):

        """ Get two dataframes with historical data """

        latestHistory = self.algo.History(self.symbols, self.lookback, Resolution.Daily)
        latestHistory = latestHistory['close'].unstack(level=0).dropna()
        latestHistoryShifted = latestHistory.rolling(11, center=True).mean().shift(60)

        return latestHistory, latestHistoryShifted
from Alpha.RotationalOptimizerAlphaCreation import RotationalOptimizerAlphaCreationModel
from Alpha.RotationalOptimizer1xAlphaCreation import RotationalOptimizer1xAlphaCreationModel
from Alpha.BuyAndHoldAlphaCreation import BuyAndHoldAlphaCreationModel
from Alpha.VixTermStructureAlphaCreation import VixTermStructureAlphaCreationModel
from Alpha.MovingAverageAlphaCreation import MovingAverageAlphaCreationModel
from Alpha.InAndOutAlphaCreation import InAndOutAlphaCreationModel

from Portfolio.CompositePortfolioConstruction import CompositePortfolioConstructionModel

from Alpha.AlphaParameters import GetAlphaParameters

from QuantConnect.DataSource import *
from custom_data import CustomData


class MultiAlphaFrameworkAlgorithm(QCAlgorithmFramework):

    def Initialize(self):

        # delete all data in OS
        #keys = [str(j).split(',')[0][1:] for _, j in enumerate(self.ObjectStore.GetEnumerator())]
        #for key in keys:
        #    self.ObjectStore.Delete(key)

        ### user-defined inputs ---------------------------------------------------------------------------

        self.SetStartDate(2012, 1, 1)  # set start date
        #self.SetEndDate(2021, 8, 1)  # set end date
        self.SetCash(1000000)  # set strategy cash

        # set the account leverage
        self.accountLeverage = 1.0
        self.BackTestWarmUp = False  #REMEMBER TO SWITCH THIS BACK
        self.stopLossTriggered = False
        self.isRiskHighest = False
        self.isRiskHigh = False
        self.TLTflag = False
        self.TLTorGLD = True

        # PORTFOLIO ------------------------------------------------------------
        
        # number of days for rolling window of returns
        alphaPortfolioOptLookback = 147
        # options are: maxReturn, minVariance, maxSharpe, maxSortino, riskParity, targetReturn,
        # targetVariance, targetVarianceNegativeReturns
        alphaPortfolioOptObjFunction = 'minVariance'

        ### ------------------------------------------------------------------------------------------------

        # apply CustomSecurityInitializer
        self.SetSecurityInitializer(lambda x: CustomSecurityInitializer(self, x))
        
        # add universe ---------------------------------------------------------
        tickersToAdd = []
        
        # RO universe
        parametersDictRO = GetAlphaParameters(self, 'RotationalOptimizer', 'riskyAssetsParameters')
        tickerCashRO = GetAlphaParameters(self, 'RotationalOptimizer', 'tickerCash')
        treasuryRatesSymbol = None
        if GetAlphaParameters(self, 'RotationalOptimizer', 'activate'):
            for ticker in parametersDictRO.keys():
                if parametersDictRO[ticker]['addTicker'][0]:
                    tickersToAdd.append(ticker)
                    tradableTicker = parametersDictRO[ticker]['addTicker'][1]
                    if tradableTicker not in tickersToAdd:
                        tickersToAdd.append(tradableTicker)
            if tickerCashRO is not None and tickerCashRO not in tickersToAdd:
                tickersToAdd.append(tickerCashRO)

            treasuryRatesSymbol = self.AddData(QuandlTreasuryRates, 'USTREASURY/YIELD', Resolution.Daily).Symbol
       
        # RO universe - 1x
        parametersDictRO1x = GetAlphaParameters(self, 'RotationalOptimizer1x', 'riskyAssetsParameters')
        tickerCashRO1x = GetAlphaParameters(self, 'RotationalOptimizer1x', 'tickerCash')
        treasuryRatesSymbol1x = None
        if GetAlphaParameters(self, 'RotationalOptimizer1x', 'activate'):
            for ticker in parametersDictRO1x.keys():
                if parametersDictRO1x[ticker]['addTicker'][0]:
                    tickersToAdd.append(ticker)
                    tradableTicker = parametersDictRO1x[ticker]['addTicker'][1]
                    if tradableTicker not in tickersToAdd:
                        tickersToAdd.append(tradableTicker)
            if tickerCashRO1x is not None and tickerCashRO1x not in tickersToAdd:
                tickersToAdd.append(tickerCashRO1x)

            treasuryRatesSymbol1x = self.AddData(QuandlTreasuryRates, 'USTREASURY/YIELD', Resolution.Daily).Symbol
        
        # BH universe - SVOL
        parametersDictBuyHoldSVOL = GetAlphaParameters(self, 'BuyAndHoldSVOL', 'tickersWeights')
        if GetAlphaParameters(self, 'BuyAndHoldSVOL', 'activate'):
            for ticker in parametersDictBuyHoldSVOL.keys():
                if ticker not in tickersToAdd:
                    tickersToAdd.append(ticker)

        # VTS universe
        parametersDictVTS = GetAlphaParameters(self, 'VixTermStructure', 'tickersWeights')
        canarySymbolVTS = None
        vixSymbol, vxvSymbol = None, None
        if GetAlphaParameters(self, 'VixTermStructure', 'activate'):
            for ticker in parametersDictVTS.keys():
                if ticker not in tickersToAdd:
                    tickersToAdd.append(ticker)
            canaryTickerVTS = GetAlphaParameters(self, 'MovingAverageSPY', 'canaryTicker')
            canarySymbolVTS = self.AddEquity(canaryTickerVTS, Resolution.Minute).Symbol
            vixSymbol = self.AddData(CBOE, 'VIX', Resolution.Daily).Symbol
            vxvSymbol = self.AddData(CBOE, 'VIX3M', Resolution.Daily).Symbol

        # MA universe - SPY
        parametersDictMovingAverageSPY = GetAlphaParameters(self, 'MovingAverageSPY', 'tickersWeights')
        canarySymbolMovingAverageSPY = None
        if GetAlphaParameters(self, 'MovingAverageSPY', 'activate'):
            for ticker in parametersDictMovingAverageSPY.keys():
                if ticker not in tickersToAdd:
                    tickersToAdd.append(ticker)
            canaryTickerMovingAverageSPY = GetAlphaParameters(self, 'MovingAverageSPY', 'canaryTicker')
            canarySymbolMovingAverageSPY = self.AddEquity(canaryTickerMovingAverageSPY, Resolution.Minute).Symbol

        # IO universe
        assetsWeights = GetAlphaParameters(self, 'InAndOut', 'assetsWeights')
        if GetAlphaParameters(self, 'InAndOut', 'activate'):
            for proxy, tickerWeight in assetsWeights.items():
                # replace ticker with symbol
                ticker = tickerWeight[0]
                assetsWeights[proxy][0] = self.AddEquity(ticker, Resolution.Minute).Symbol
                if ticker not in tickersToAdd:
                    tickersToAdd.append(ticker)

        # add all universes
        for ticker in tickersToAdd:
            if ticker.split('_')[0] == 'CUSTOM':
                customSecurity = self.AddData(CustomData, ticker, Resolution.Daily)
                customSecurity.SetFeeModel(ConstantFeeModel(0))
            else:
                self.AddEquity(ticker, Resolution.Minute)
                
        # make sure we add SPY for scheduling
        if 'SPY' not in tickersToAdd:
            self.AddEquity('SPY', Resolution.Minute)

        # get all active alpha models
        alphaModels = [key for key, value in GetAlphaParameters(self).items() if value['activate']]
        
        # add alpha models -----------------------------------------------------
        self.SetAlpha(
            CompositeAlphaModel(
                RotationalOptimizerAlphaCreationModel(self, name='RotationalOptimizer',
                                                      activateAlpha=GetAlphaParameters(self, 'RotationalOptimizer', 'activate'),
                                                      parametersDict=parametersDictRO,
                                                      rebalancingFrequency=GetAlphaParameters(self, 'RotationalOptimizer', 'rebalancingFrequency'),
                                                      lookbackOptimization=GetAlphaParameters(self, 'RotationalOptimizer', 'lookbackOptimization'),
                                                      objFunction=GetAlphaParameters(self, 'RotationalOptimizer', 'objFunction'),
                                                      tickerCash=tickerCashRO, treasuryRatesSymbol=treasuryRatesSymbol),
                                                      
                RotationalOptimizer1xAlphaCreationModel(self, name='RotationalOptimizer1x',
                                                      activateAlpha=GetAlphaParameters(self, 'RotationalOptimizer1x', 'activate'),
                                                      parametersDict=parametersDictRO1x,
                                                      rebalancingFrequency=GetAlphaParameters(self, 'RotationalOptimizer1x', 'rebalancingFrequency'),
                                                      lookbackOptimization=GetAlphaParameters(self, 'RotationalOptimizer1x', 'lookbackOptimization'),
                                                      objFunction=GetAlphaParameters(self, 'RotationalOptimizer1x', 'objFunction'),
                                                      tickerCash=tickerCashRO1x, treasuryRatesSymbol=treasuryRatesSymbol1x),

                BuyAndHoldAlphaCreationModel(self, name='BuyAndHoldSVOL',
                                             activateAlpha=GetAlphaParameters(self, 'BuyAndHoldSVOL', 'activate'),
                                             parametersDict=parametersDictBuyHoldSVOL,
                                             rebalancingFrequency=GetAlphaParameters(self, 'BuyAndHoldSVOL', 'rebalancingFrequency')),

                VixTermStructureAlphaCreationModel(self, name='VixTermStructure',
                                                   activateAlpha=GetAlphaParameters(self, 'VixTermStructure', 'activate'),
                                                   parametersDict=parametersDictVTS,
                                                   vtsSymbols=[vixSymbol, vxvSymbol],
                                                   canarySymbol=canarySymbolVTS,
                                                   periodShortSMA=GetAlphaParameters(self, 'VixTermStructure', 'periodShortSMA'),
                                                   periodLongSMA=GetAlphaParameters(self, 'VixTermStructure', 'periodLongSMA'),
                                                   contangoThresholds=GetAlphaParameters(self, 'VixTermStructure', 'contangoThresholds'),
                                                   rebalancingFrequency=GetAlphaParameters(self, 'VixTermStructure', 'rebalancingFrequency')),

                MovingAverageAlphaCreationModel(self, name='MovingAverageSPY',
                                                activateAlpha=GetAlphaParameters(self, 'MovingAverageSPY', 'activate'),
                                                parametersDict=parametersDictMovingAverageSPY,
                                                canarySymbol=canarySymbolMovingAverageSPY,
                                                periodShortSMA=GetAlphaParameters(self, 'MovingAverageSPY', 'periodShortSMA'),
                                                periodLongSMA=GetAlphaParameters(self, 'MovingAverageSPY', 'periodLongSMA'),
                                                movingAverageThresholds=GetAlphaParameters(self, 'MovingAverageSPY', 'movingAverageThresholds'),
                                                rebalancingFrequency=GetAlphaParameters(self, 'MovingAverageSPY', 'rebalancingFrequency')),

                InAndOutAlphaCreationModel(self, name='InAndOut',
                                           activateAlpha=GetAlphaParameters(self, 'InAndOut', 'activate'),
                                           assetsWeights=assetsWeights,
                                           rebalancingFrequency=GetAlphaParameters(self, 'InAndOut',
                                                                                   'rebalancingFrequency'))
            )
        )
        
        # add portfolio model --------------------------------------------------
        optimizationBounds = {key: value['optimizationBounds']
                              for key, value in GetAlphaParameters(self).items() if value['activate']}
        self.SetPortfolioConstruction(
            CompositePortfolioConstructionModel(self, alphaModels=alphaModels,
                                                optimizationBounds=optimizationBounds,
                                                alphaPortfolioOptLookback=alphaPortfolioOptLookback,
                                                alphaPortfolioOptObjFunction=alphaPortfolioOptObjFunction))
        
        # add execution model --------------------------------------------------
        self.SetExecution(ImmediateExecutionModel())

        # add risk model -------------------------------------------------------
        self.SetRiskManagement(NullRiskManagementModel())

        # warm up algorithm
        self.SetWarmup(200, Resolution.Daily)


def CustomSecurityInitializer(self, security):

    """ Initialize the security """

    security.SetLeverage(self.accountLeverage + 1)


class QuandlTreasuryRates(PythonQuandl):
    def __init__(self):
        self.ValueColumnName = 'value'
import json


def CheckHistory(symbol, history):

    """ Check if the history dataframe is valid """

    if (str(symbol) not in history.index
            or history.loc[str(symbol)].get('open') is None
            or history.loc[str(symbol)].get('open').isna().any()
            or history.loc[str(symbol)].get('high') is None
            or history.loc[str(symbol)].get('high').isna().any()
            or history.loc[str(symbol)].get('low') is None
            or history.loc[str(symbol)].get('low').isna().any()
            or history.loc[str(symbol)].get('close') is None
            or history.loc[str(symbol)].get('close').isna().any()):
        return False

    else:
        return True


def ShouldEmitInsight(self, algorithm, symbol):

    """ Check if we should emit new insights for a symbol """

    tradingDay = algorithm.Time.day
    generatedInsight = self.generatedInsightBySymbol.get(symbol)

    if generatedInsight is not None:
        if self.generatedInsightBySymbol[symbol] == tradingDay:
            return False
        else:
            self.generatedInsightBySymbol[symbol] = tradingDay
            return True
    else:
        self.generatedInsightBySymbol[symbol] = tradingDay
        return True


def SaveToObjectStore(algorithm, fileName, dictToSave):

    """ Save information into the Object Store """

    jsonFile = json.dumps(dictToSave)
    algorithm.ObjectStore.Save(fileName, jsonFile)


def ReadFromObjectStore(algorithm, fileName):

    if not algorithm.ObjectStore.ContainsKey(fileName):
        return {}

    jsonObj = algorithm.ObjectStore.Read(fileName)
    dictObj = json.loads(jsonObj)

    return dictObj
class VixTermStructureAlphaCreationModel(AlphaModel):

    def __init__(self, algorithm, name, activateAlpha, parametersDict, vtsSymbols, canarySymbol,
                 periodShortSMA, periodLongSMA, contangoThresholds, rebalancingFrequency):

        self.algo = algorithm
        self.Name = name
        self.activateAlpha = activateAlpha
        self.parametersDict = parametersDict
        self.canarySymbol = canarySymbol
        self.contangoThresholds = contangoThresholds
        self.rebalancingFrequency = rebalancingFrequency

        self.weightsDict = {}
        self.timeToEmitInsights = False
       
        self.isCanaryGreaterThanMA = False
        self.isCanaryLessThanMA = False
        self.isCanaryAboveMA = True
        self.atrStocksCrossover = None
        self.vtsRatioDiffMA = SimpleMovingAverage(3)
        
        self.waterMark = -0.03
        self.waterMarkStocks = -0.03
        self.VolatilityStopped = False
        self.counterdays = 0
        #self.gdp = self.algo.AddData(Fred, "FRED/GDP", Resolution.Daily,TimeZones.NewYork, True)
        #self.mcap = self.algo.AddData(Fred, "FRED/NCBCEL", Resolution.Daily,TimeZones.NewYork, True)
        
        if self.activateAlpha:
            self.vixLongSMA = algorithm.SMA(vtsSymbols[0], periodLongSMA, Resolution.Daily)
            self.vxvLongSMA = algorithm.SMA(vtsSymbols[1], periodLongSMA, Resolution.Daily)

            self.vixShortSMA = algorithm.SMA(vtsSymbols[0], periodShortSMA, Resolution.Daily)
            self.vxvShortSMA = algorithm.SMA(vtsSymbols[1], periodShortSMA, Resolution.Daily)
            
            self.canarySymbolSMA = algorithm.SMA(canarySymbol, 231, Resolution.Daily)
            self.canarySymbolSMA34 = algorithm.SMA(canarySymbol, 42, Resolution.Daily)
            self.canarySymbolSMA05 = algorithm.SMA(canarySymbol, 3, Resolution.Daily)

    def Update(self, algorithm, data):
        
        insights = []

        if not self.timeToEmitInsights:
            return insights
        
        insightExpiry = Expiry.EndOfDay(algorithm.Time)
        
        # loop through insights and send portfolio targets
        for symbol, weight in self.weightsDict.items():
            if symbol.Value.split('_')[0] != 'CUSTOM' and not data.ContainsKey(symbol):
                continue
            if weight > 0:
                insightDirection = InsightDirection.Up
            elif weight < 0:
                insightDirection = InsightDirection.Down
            else:
                insightDirection = InsightDirection.Flat
                
            insights.append(Insight.Price(symbol, insightExpiry, insightDirection, None, None, None, abs(weight)))
                            
        self.timeToEmitInsights = False
        
        return insights

    def EvaluateRisk(self):
        if (not self.activateAlpha or not self.vixLongSMA.IsReady
                or not self.vxvLongSMA.IsReady or not self.canarySymbolSMA):
            return

        # made it a dynamic calculation to avoid problems with the Indicator Extension
        vtsRatioShort = self.vxvShortSMA.Current.Value / self.vixShortSMA.Current.Value
        vtsRatioLong = self.vxvLongSMA.Current.Value / self.vixLongSMA.Current.Value
        
        diff = vtsRatioShort - vtsRatioLong
        self.vtsRatioDiffMA.Update(self.algo.Time, diff)
        
        isvtsRatioDiffMANegative = self.vtsRatioDiffMA.Current.Value < 0

        canaryPrice = self.algo.Securities[self.canarySymbol].Price
        canaryMA = self.canarySymbolSMA.Current.Value
        canaryMA34 = self.canarySymbolSMA34.Current.Value
        canaryMA05 = self.canarySymbolSMA05.Current.Value

        
        self.IsCanaryGreaterThanMA = False #canaryPrice > canaryMA * 1.1
        self.isCanaryLessThanMA = canaryPrice < canaryMA
        
        isTermStructureNegative = vtsRatioShort < vtsRatioLong
        #isTermStructureNegative = isvtsRatioDiffMANegative 
        isTermStructureLower = vtsRatioShort < 0.923
        isTermStructureGreater = vtsRatioShort > 1.25
        isVixGreater = self.vixShortSMA.Current.Value > 25
        isATRCrossOverSPY = self.atrStocksCrossover.Current.Value > 1.5
        isATRCrossOverSPYLongTerm = canaryMA05 < canaryMA34
        
        #self.algo.isRiskHighest = isTermStructureNegative and isTermStructureLower and isVixGreater 
        #self.algo.isRiskHigh = isTermStructureNegative and isVixGreater 
        self.algo.isRiskHighest = False
        self.algo.isRiskHigh = False
        
        
        self.algo.Log("Term Structure Negative ? :" + str(isTermStructureNegative))
        self.algo.Log("Term Structure Lower ? :" + str(isTermStructureLower))
        self.algo.Log("Is VIX Greater ? :" + str(isVixGreater))
        self.algo.Log("Has ATR CrossOvered ? :" + str(isATRCrossOverSPY))
        self.algo.Log("Is SPY < MA ? :" + str(self.isCanaryLessThanMA))
       

        if isATRCrossOverSPY or self.isCanaryLessThanMA:
            if isTermStructureNegative and isTermStructureLower:
                self.weightsDict = {security.Symbol: self.parametersDict[security.Symbol.Value][4]
                                    for security in self.algo.ActiveSecurities.Values
                                    if security.Symbol.Value in self.parametersDict}
                self.algo.isRiskHighest = True
            elif isTermStructureNegative:
                self.weightsDict = {security.Symbol: self.parametersDict[security.Symbol.Value][3]
                                    for security in self.algo.ActiveSecurities.Values
                                    if security.Symbol.Value in self.parametersDict}
                self.algo.isRiskHigh = True
            else:
                if self.isCanaryLessThanMA or isTermStructureGreater: 
                    self.weightsDict = {security.Symbol: self.parametersDict[security.Symbol.Value][5]
                                    for security in self.algo.ActiveSecurities.Values
                                    if security.Symbol.Value in self.parametersDict}
                else: 
                    self.weightsDict = {security.Symbol: self.parametersDict[security.Symbol.Value][0]
                                    for security in self.algo.ActiveSecurities.Values
                                    if security.Symbol.Value in self.parametersDict}
        else:
            if isTermStructureNegative and isTermStructureLower and isVixGreater:
                self.weightsDict = {security.Symbol: self.parametersDict[security.Symbol.Value][4]
                                    for security in self.algo.ActiveSecurities.Values
                                    if security.Symbol.Value in self.parametersDict}
                self.algo.isRiskHighest = True
            elif isTermStructureNegative and isVixGreater:
                self.weightsDict = {security.Symbol: self.parametersDict[security.Symbol.Value][3]
                                    for security in self.algo.ActiveSecurities.Values
                                    if security.Symbol.Value in self.parametersDict}
                self.algo.isRiskHigh = True
            else:
                if self.isCanaryLessThanMA or isTermStructureGreater:
                    self.weightsDict = {security.Symbol: self.parametersDict[security.Symbol.Value][5]
                                    for security in self.algo.ActiveSecurities.Values
                                    if security.Symbol.Value in self.parametersDict}
                else: 
                    self.weightsDict = {security.Symbol: self.parametersDict[security.Symbol.Value][0]
                                    for security in self.algo.ActiveSecurities.Values
                                    if security.Symbol.Value in self.parametersDict}
                                     
        if vtsRatioShort < 0.85 and isTermStructureNegative == False:
            self.weightsDict = {security.Symbol: self.parametersDict[security.Symbol.Value][2]
                                    for security in self.algo.ActiveSecurities.Values
                                     if security.Symbol.Value in self.parametersDict}
            self.algo.isRiskHighest = False
            self.algo.isRiskHigh = False
                                     
        if vtsRatioShort > 0.923 and self.vixShortSMA.Current.Value > 27 and isTermStructureNegative == False  :
            self.weightsDict = {security.Symbol: self.parametersDict[security.Symbol.Value][2]
                                    for security in self.algo.ActiveSecurities.Values
                                     if security.Symbol.Value in self.parametersDict}
            self.algo.isRiskHighest = False
            self.algo.isRiskHigh = False
            
        #if not self.algo.TLTorGLD:
        #    for symbol, weight in self.weightsDict.items():
        #        if symbol.Value == "TMF":
        #            TMFweight = self.weightsDict[symbol]
        #            self.weightsDict[symbol] = 0
        #    for symbol, weight in self.weightsDict.items():
        #        if symbol.Value == "TIP":
        #            self.weightsDict[symbol] = TMFweight
            
            
    
    
    def GenerateSignals(self):
        self.timeToEmitInsights = True
    
    def VolatilityStopLoss(self):
        if self.algo.Time.hour == 9 or self.algo.Time.hour == 10: 
            return
        stopLossLevel = 0.035
        for symbol in self.weightsDict.keys():
            if symbol.Value == 'UVXY': 
                pnlVolatility = self.algo.Securities[symbol.Value].Holdings.UnrealizedProfitPercent
                if pnlVolatility > self.waterMark + stopLossLevel:
                    self.waterMark = pnlVolatility - stopLossLevel
                if pnlVolatility < self.waterMark: 
                    self.VolatilityStopped = True
                    self.waterMark = -stopLossLevel
            
        #for symbol in self.weightsDict.keys():
                if self.VolatilityStopped == True: # and symbol.Value == 'UVXY': 
                    self.weightsDict[symbol] = 0
                    self.VolatilityStopped = False
                    #self.timeToEmitInsights = True
                    self.algo.SetHoldings(symbol, 0)
                    self.algo.stopLossTriggered = True
    
    def StocksStopLoss(self):
        if self.algo.Time.hour == 9 or self.algo.Time.hour == 10: 
            return
        StocksStopLossLevel = 0.15
        for symbol in self.weightsDict.keys():
            if symbol.Value == 'TQQQ': 
                pnlStocks = self.algo.Securities[symbol.Value].Holdings.UnrealizedProfitPercent
                if pnlStocks > self.waterMarkStocks + StocksStopLossLevel:
                    self.waterMarkStocks = pnlStocks - StocksStopLossLevel
                if pnlStocks < self.waterMarkStocks: 
                    self.waterMarkStocks = -StocksStopLossLevel
                    self.weightsDict[symbol] = 0
                    self.algo.SetHoldings(symbol, 0)
                    self.algo.stopLossTriggered = True
       
    
    def OnMonthStart(self):
        if self.algo.Securities[self.canarySymbol].Price >= self.canarySymbolSMA.Current.Value and self.algo.Securities[self.canarySymbol].Price <= self.canarySymbolSMA.Current.Value*1.1:
            self.isCanaryAboveMA = True
        else:
            self.isCanaryAboveMA = False
    
    
    def OnSecuritiesChanged(self, algorithm, changes):

        """ Actions to take every time the universe changes """

        for security in changes.AddedSecurities:
            if security.Symbol.Value == 'SPY':
                symbol = security.Symbol
                algorithm.Schedule.On(self.rebalancingFrequency[0](symbol),
                                      algorithm.TimeRules.AfterMarketOpen(symbol, self.rebalancingFrequency[1]-1), self.EvaluateRisk)
                algorithm.Schedule.On(self.rebalancingFrequency[0](symbol),
                                      algorithm.TimeRules.AfterMarketOpen(symbol, self.rebalancingFrequency[1]), self.GenerateSignals)
                algorithm.Schedule.On(self.rebalancingFrequency[0](symbol), algorithm.TimeRules.Every(TimeSpan.FromMinutes(60)) , self.VolatilityStopLoss)
                algorithm.Schedule.On(algorithm.DateRules.MonthStart(symbol),
                                      algorithm.TimeRules.AfterMarketOpen(symbol, 1), self.OnMonthStart)
                                      
            if self.activateAlpha and security.Symbol.Value in ['SPY']:
                shortATR = algorithm.ATR(security.Symbol, 10, Resolution.Hour)
                longATR = algorithm.ATR(security.Symbol, 63, Resolution.Hour)
                longerATR = algorithm.ATR(security.Symbol, 210, Resolution.Hour)
                self.atrStocksCrossover = IndicatorExtensions.Over(shortATR, longATR)
                self.atrStocksCrossoverLongTerm = IndicatorExtensions.Over(longATR, longerATR)
                
                
class Fred(PythonQuandl):
    def __init__(self):
        self.ValueColumnName = 'value'
               
class CustomData(PythonData):

    """ Add custom ticker """

    def __init__(self):

        # dictionary with custom tickers and urls
        self.urls = {'CUSTOM_SPD': 'https://www.dropbox.com/s/fgx97uwvcdnb3ib/spd_index.csv?dl=1',
                     'CUSTOM_SVOL': 'https://www.dropbox.com/s/v4aq9l49572gyvr/svol_bsv_3_index.csv?dl=1'}

    def GetSource(self, config, date, isLive):

        # retrieve the relevant url
        source = self.urls.get(config.Symbol.Value, '')

        return SubscriptionDataSource(source, SubscriptionTransportMedium.RemoteFile)

    def Reader(self, config, line, date, isLive):

        # if first character is not digit, pass
        if not (line.strip() and line[0].isdigit()):
            return None

        data = line.split(',')
        customTicker = CustomData()
        customTicker.Symbol = config.Symbol
        customTicker.Time = datetime.strptime(data[0], '%d/%m/%Y')
        customTicker.Value = float(data[1])

        return customTicker
# Version that works with 3x
def GetAlphaParameters(self, alphaName=None, parameter=None):

    stocksTicker = 'TQQQ'
    spyTicker = 'SPXL'
    bondsTicker = 'TMF'
    cashTicker = 'IEF'
    inflTicker = 'TIP'
    goldTicker = 'IAU'
    volatilityTicker = 'UVXY'
    volatilityFactor = 1
    minutesAfterStart = 90

    alphaParametersDict = {'RotationalOptimizer': {'activate': True,
                                                   'riskyAssetsParameters': {
                                                                             'SPY': {'addTicker': [True, spyTicker],
                                                                                     'sma': [200, (-0.10, 0.10), 0.0],
                                                                                     'macd': [(231, 567, 168), 0, 0.3],
                                                                                     'yield': [True, 0],
                                                                                     'optimizationBounds': (0, 1)},
                                                                             'TLT': {'addTicker': [True, bondsTicker],
                                                                                     'sma': [600, (-0.2, 0.2), 0.0],
                                                                                     'macd': [(63, 168, 42), 0, 0],
                                                                                     'yield': [False, 0],
                                                                                     'optimizationBounds': (0, 1)},
                                                                             'GLD': {'addTicker': [True, goldTicker],
                                                                                    'sma': [100, (-0.15, 0.15), 0.0],
                                                                                    'macd': [(50, 150, 30), 0, 0.3],
                                                                                    'yield': [False, 0],
                                                                                    'optimizationBounds': (0, 1)},
                                                                             'BLOK': {'addTicker': [True, 'BLOK'],     #Change to BITO
                                                                                    'sma': [100, (-0.15, 0.15), 0.0],
                                                                                    'macd': [(50, 150, 30), 0, 0.3],
                                                                                    'yield': [False, 0],
                                                                                    'optimizationBounds': (0, 1)}   
                                                                             },
                                                   'lookbackOptimization': 63,
                                                   'objFunction': 'minVariance',
                                                   'tickerCash': inflTicker,
                                                   'rebalancingFrequency': (self.DateRules.MonthStart, minutesAfterStart),
                                                   'optimizationBounds': (0.10, 0.80)},
                                                   
                            'RotationalOptimizer1x': {'activate': True,
                                                    'riskyAssetsParameters': {       
                                                                             'CUSTOM_SVOL': {'addTicker': [True, 'CUSTOM_SVOL'],  #Change to actual tickers
                                                                                     'sma': [200, (-0.10, 0.10), 1],
                                                                                     'macd': [(231, 567, 168), 0, 1],
                                                                                     'yield': [False, 0],
                                                                                     'optimizationBounds': (0, 1)},
                                                                             'CUSTOM_SPD': {'addTicker': [True, 'CUSTOM_SPD'],
                                                                                     'sma': [200, (-0.10, 0.10), 1],
                                                                                     'macd': [(231, 567, 168), 0, 1],
                                                                                     'yield': [False, 0],
                                                                                     'optimizationBounds': (0, 1)},
                                                                             'TIP': {'addTicker': [True, 'TIP'],
                                                                                    'sma': [100, (-0.15, 0.15), 1],
                                                                                    'macd': [(50, 150, 30), 0, 1],
                                                                                    'yield': [False, 0],
                                                                                    'optimizationBounds': (0, 1)},
                                                                             },
                                                   'lookbackOptimization': 21,
                                                   'objFunction': 'minVariance',
                                                   'tickerCash': inflTicker,
                                                   'rebalancingFrequency': (self.DateRules.EveryDay, minutesAfterStart),
                                                   'optimizationBounds': (0.01, 0.05)},

                           'BuyAndHoldSVOL': {'activate': False,
                                              'tickersWeights': {'CUSTOM_SVOL': 0.33, 'CUSTOM_SPD': 0.33,'TQQQ': 0.00, 'TMF': 0.00, 'BITO': 0.00,
                                                                 'IAU': 0.00, 'DGP': 0, 'BND': 0, 'SVXY': 0, 'IEF': 0.00, 'TIP': 0.34,
                                                                 'TLT': 0, 'TYD': 0},
                                              'rebalancingFrequency': (self.DateRules.MonthStart, minutesAfterStart),
                                              'optimizationBounds': (0.14, 0.15)},

                           'VixTermStructure': {'activate': True,
                                                'tickersWeights': { volatilityTicker:    [0.0, 0.1, 0.2, 0.4, 1.0],
                                                                    stocksTicker:        [0.6, 0.9, 0.8, 0.6, 0.0],
                                                                    bondsTicker:         [0.4, 0.0, 0.0, 0.0, 0.0],
                                                                    goldTicker:          [0.0, 0.0, 0.0, 0.0, 0.0]},
                                                'canaryTicker': 'SPY',
                                                'periodShortSMA': 3,
                                                'periodLongSMA': 15,
                                                'contangoThresholds': [1.25, 0.923],
                                                'rebalancingFrequency': (self.DateRules.EveryDay, minutesAfterStart),
                                                'optimizationBounds': (0.30, 0.40)},

                           'MovingAverageSPY': {'activate': False,
                                                'tickersWeights': {
                                                                   'TQQQ': [0.14, 0.14, 0.00],
                                                                   'TMF': [0.07, 0.07, 0.07],
                                                                   'IAU': [0.04, 0.04, 0.04],
                                                                   'IEF': [0.35, 0.35, 0.40],
                                                                   'TIP': [0.40, 0.40, 0.49]
                                                                    },
                                                'canaryTicker': 'SPY',
                                                'periodShortSMA': 1,
                                                'periodLongSMA': 168,
                                                'movingAverageThresholds': [1.1, 1.0],
                                                'rebalancingFrequency': (self.DateRules.MonthStart, minutesAfterStart),
                                                'optimizationBounds': (0.01, 1)},

                           'InAndOut': {'activate': True,
                                        'assetsWeights': {'stocksProxy': [stocksTicker, 0.6],
                                                          'bondsProxy': [bondsTicker, 0.4],
                                                          'cashProxy': [cashTicker, 0],
                                                          'inflProxy': [inflTicker, 0],
                                                          'goldProxy': [goldTicker, 0],
                                                          'volatilityProxy': [volatilityTicker, 0]},
                                        'rebalancingFrequency': (self.DateRules.EveryDay, minutesAfterStart),
                                        'optimizationBounds': (0.20, 0.40)},
                           }

    # if no filtering elements provided, return the whole dictionary
    if alphaName is None and parameter is None:
        return alphaParametersDict

    return alphaParametersDict[alphaName][parameter]


    
# With 15% DD
def GetAlphaParameters(self, alphaName=None, parameter=None):

    stocksTicker = 'TQQQ'
    spyTicker = 'SPXL'
    bondsTicker = 'TMF'
    cashTicker = 'IEF'
    inflTicker = 'TIP'
    goldTicker = 'IAU'
    volatilityTicker = 'UVXY'
    volatilityFactor = 1
    minutesAfterStart = 90

    alphaParametersDict = {'RotationalOptimizer': {'activate': True,
                                                   'riskyAssetsParameters': {'SPY': {'addTicker': [True, spyTicker],
                                                                                     'sma': [200, (-0.10, 0.10), 0.0],
                                                                                     'macd': [(231, 567, 168), 0, 0.3],
                                                                                     'yield': [True, 0],
                                                                                     'optimizationBounds': (0, 1)},
                                                                             'TLT': {'addTicker': [True, bondsTicker],
                                                                                     'sma': [600, (-0.2, 0.2), 0.0],
                                                                                     'macd': [(63, 168, 42), 0, 0],
                                                                                     'yield': [False, 0],
                                                                                     'optimizationBounds': (0, 1)},
                                                                             'GLD': {'addTicker': [True, goldTicker],
                                                                                    'sma': [100, (-0.15, 0.15), 0.0],
                                                                                    'macd': [(50, 150, 30), 0, 0.3],
                                                                                    'yield': [False, 0],
                                                                                    'optimizationBounds': (0, 1)},
                                                                             'BLOK': {'addTicker': [True, 'BLOK'],     #Change to BITO
                                                                                    'sma': [100, (-0.15, 0.15), 0.0],
                                                                                    'macd': [(50, 150, 30), 0, 0.3],
                                                                                    'yield': [False, 0],
                                                                                    'optimizationBounds': (0, 1)}   
                                                                             },
                                                   'lookbackOptimization': 63,
                                                   'objFunction': 'minVariance',
                                                   'tickerCash': inflTicker,
                                                   'rebalancingFrequency': (self.DateRules.MonthStart, minutesAfterStart),
                                                   'optimizationBounds': (0.15, 0.50)},
                                                   
                            'RotationalOptimizer1x': {'activate': True,
                                                    'riskyAssetsParameters': {       
                                                                             'CUSTOM_SVOL': {'addTicker': [True, 'CUSTOM_SVOL'],  #Change to actual tickers
                                                                                     'sma': [200, (-0.10, 0.10), 1],
                                                                                     'macd': [(231, 567, 168), 0, 1],
                                                                                     'yield': [False, 0],
                                                                                     'optimizationBounds': (0, 1)},
                                                                             'CUSTOM_SPD': {'addTicker': [True, 'CUSTOM_SPD'],
                                                                                     'sma': [200, (-0.10, 0.10), 1],
                                                                                     'macd': [(231, 567, 168), 0, 1],
                                                                                     'yield': [False, 0],
                                                                                     'optimizationBounds': (0, 1)},
                                                                             'TIP': {'addTicker': [True, 'TIP'],
                                                                                    'sma': [100, (-0.15, 0.15), 1],
                                                                                    'macd': [(50, 150, 30), 0, 1],
                                                                                    'yield': [False, 0],
                                                                                    'optimizationBounds': (0, 1)},
                                                                             
                                                                             },
                                                   'lookbackOptimization': 21,
                                                   'objFunction': 'minVariance',
                                                   'tickerCash': inflTicker,
                                                   'rebalancingFrequency': (self.DateRules.WeekStart, minutesAfterStart),
                                                   'optimizationBounds': (0.14, 0.15)},

                           'BuyAndHoldSVOL': {'activate': False,
                                              'tickersWeights': {'CUSTOM_SVOL': 0, 'TQQQ': 0.05, 'TMF': 0.03, 'BITO': 0.07,
                                                                 'IAU': 0.15, 'DGP': 0, 'BND': 0, 'SVXY': 0, 'IEF': 0.35, 'TIP': 0.35,
                                                                 'TLT': 0, 'TYD': 0},
                                              'rebalancingFrequency': (self.DateRules.MonthStart, minutesAfterStart),
                                              'optimizationBounds': (0.01, 1)},

                           'VixTermStructure': {'activate': True,
                                                'tickersWeights': {volatilityTicker:    [0.0, 0.1, 0.2, 0.5, 1.0],
                                                                   stocksTicker:        [0.8, 0.9, 0.8, 0.5, 0.0],
                                                                   bondsTicker:         [0.2, 0.0, 0.0, 0.0, 0.0]},
                                                'canaryTicker': 'SPY',
                                                'periodShortSMA': 3,
                                                'periodLongSMA': 15,
                                                'contangoThresholds': [1.25, 0.923],
                                                'rebalancingFrequency': (self.DateRules.EveryDay, minutesAfterStart),
                                                'optimizationBounds': (0.19, 0.20)},

                           'MovingAverageSPY': {'activate': False,
                                                'tickersWeights': {
                                                                   'TQQQ': [0.14, 0.14, 0.00],
                                                                   'TMF': [0.07, 0.07, 0.07],
                                                                   'IAU': [0.04, 0.04, 0.04],
                                                                   'IEF': [0.35, 0.35, 0.40],
                                                                   'TIP': [0.40, 0.40, 0.49]
                                                                    },
                                                'canaryTicker': 'SPY',
                                                'periodShortSMA': 1,
                                                'periodLongSMA': 168,
                                                'movingAverageThresholds': [1.1, 1.0],
                                                'rebalancingFrequency': (self.DateRules.MonthStart, minutesAfterStart),
                                                'optimizationBounds': (0.01, 1)},

                           'InAndOut': {'activate': True,
                                        'assetsWeights': {'stocksProxy': [stocksTicker, 0.6],
                                                          'bondsProxy': [bondsTicker, 0.4],
                                                          'cashProxy': [cashTicker, 0],
                                                          'inflProxy': [inflTicker, 0],
                                                          'goldProxy': [goldTicker, 0],
                                                          'volatilityProxy': [volatilityTicker, 0]},
                                        'rebalancingFrequency': (self.DateRules.EveryDay, minutesAfterStart),
                                        'optimizationBounds': (0.15, 0.25)},
                           }

    # if no filtering elements provided, return the whole dictionary
    if alphaName is None and parameter is None:
        return alphaParametersDict

    return alphaParametersDict[alphaName][parameter]

from OptimizerModules.OptimizerClass import PortfolioOptimizer
import pandas as pd
import general_utils as utils


class RotationalOptimizer1xAlphaCreationModel(AlphaModel):

    def __init__(self, algorithm, name, activateAlpha, parametersDict, rebalancingFrequency,
                 lookbackOptimization, objFunction, tickerCash, treasuryRatesSymbol):

        self.algo = algorithm
        self.Name = name
        self.activateAlpha = activateAlpha
        self.parametersDict = parametersDict
        self.rebalancingFrequency = rebalancingFrequency
        self.lookbackOptimization = lookbackOptimization
        self.objFunction = objFunction
        self.tickerCash = tickerCash
        self.treasuryRatesSymbol = treasuryRatesSymbol
        self.leverageFactor = 1

        # for yield signal crisis
        self.lookbackNegativeYield = 147  # number of days to lookback for negative values
        self.startCrisisYieldValue = 0.3  # the yield value above which we apply the yield weight condition
        
        # initialize the optimizer
        self.optimizer = PortfolioOptimizer()
            
        # get all the parameters for the indicators
        valuesList = []
        self.alphaTickers = []
        for ticker in parametersDict.keys():
            if parametersDict[ticker]['addTicker'][0]:
                valuesList.append(parametersDict[ticker]['sma'][0])
                valuesList.append(sum(parametersDict[ticker]['macd'][0]))
                
                self.alphaTickers.append(ticker)
                tradableTicker = parametersDict[ticker]['addTicker'][1]
                if tradableTicker != ticker:
                    self.alphaTickers.append(tradableTicker)
        self.alphaTickers.append(self.tickerCash)
        
        # keep the highest parameter provided to call history
        self.lookbackHistory = max(lookbackOptimization, max(valuesList))

        self.weightsDict = {}
        self.timeToEmitInsights = False
        self.atrStocksCrossover = None
        self.atrBondsCrossover = None
        self.weightsRetrieved = False
        self.weekStart = False
        
        # Sudhir changes to code to optimize on start if nothing found in object store. 
        
        if self.algo.LiveMode:
            dictFromOS = utils.ReadFromObjectStore(self.algo, 'RO1x')
            if dictFromOS:
                self.algo.Log('RO1x; retrieving last optimal weights from object store: ' + str(dictFromOS))
                self.weightsDict = {self.algo.Symbol(ticker): weight for ticker, weight in dictFromOS.items()}
                self.weightsRetrieved = True
        

    def Update(self, algorithm, data):
        
        insights = []
        
        if not self.timeToEmitInsights:
            return insights
        
        insightExpiry = Expiry.EndOfDay(algorithm.Time)
        
        # loop through insights and send portfolio targets
        for symbol, weight in self.weightsDict.items():
            if symbol.Value.split('_')[0] != 'CUSTOM' and not data.ContainsKey(symbol):
                continue
            if weight > 0:
                insightDirection = InsightDirection.Up
            elif weight < 0:
                insightDirection = InsightDirection.Down
            else:
                insightDirection = InsightDirection.Flat
                
            insights.append(Insight.Price(symbol, insightExpiry, insightDirection, None, None, None, abs(weight)))
                            
        self.timeToEmitInsights = False
        
        return insights

    def GenerateSignals(self):

        """ Create new signals """

        if not self.activateAlpha:
            return
        
        #if self.algo.TLTorGLD:
        #    self.tickerCash = "IEF"
        #else:
        #    self.tickerCash = "TIP"
        
        # get active symbols for this alpha
        symbols = [x.Symbol for x in self.algo.ActiveSecurities.Values if x.Symbol.Value in self.alphaTickers]

        # determine target percent for the given insights (check function DetermineTargetPercent for details)
        self.weightsDict = self.DetermineTargetPercent(self.algo, symbols)
        
        self.CalculateModelLeverageFactor()
        
        self.timeToEmitInsights = True

        if self.algo.LiveMode or self.algo.BackTestWarmUp == True:
            dictToOS = {symbol.Value: weight for symbol, weight in self.weightsDict.items()}
            utils.SaveToObjectStore(self.algo, 'RO1x', dictToOS)
            

    def CheckCrossoverATR(self):
        
        if self.weightsRetrieved == True: 
            self.weightsRetrieved = False
            self.timeToEmitInsights = True
            
        """ Check if there was an ATR Crossover to trigger GenerateSignals """
        
        if (self.atrStocksCrossover is not None and self.atrBondsCrossover is not None
                and (self.atrStocksCrossover.Current.Value > 1.5 or self.atrBondsCrossover.Current.Value > 1.5) 
                and (self.weekStart)):
            self.algo.Log('RO; triggering GenerateSignals due to ATR Crossover')
            self.GenerateSignals()
            
        self.weekStart = False
            

    def OnWeekStart(self):
        self.weekStart = True
    
    def OnSecuritiesChanged(self, algorithm, changes):

        """ Actions to take every time the universe changes """

        for security in changes.AddedSecurities:
            if security.Symbol.Value == 'SPY':
                symbol = security.Symbol
                algorithm.Schedule.On(self.rebalancingFrequency[0](symbol),
                                      algorithm.TimeRules.AfterMarketOpen(symbol, self.rebalancingFrequency[1]),
                                      self.GenerateSignals)
                algorithm.Schedule.On(algorithm.DateRules.EveryDay(symbol),
                                      algorithm.TimeRules.AfterMarketOpen(symbol, self.rebalancingFrequency[1]),
                                      self.CheckCrossoverATR)
                algorithm.Schedule.On(algorithm.DateRules.WeekStart(symbol),
                                      algorithm.TimeRules.AfterMarketOpen(symbol, 1), self.OnWeekStart)

            # initialize atr indicators
            if self.activateAlpha and security.Symbol.Value in ['SPY', 'TLT']:
                shortATR = algorithm.ATR(security.Symbol, 10, Resolution.Hour)
                longATR = algorithm.ATR(security.Symbol, 63, Resolution.Hour)
                if security.Symbol.Value == 'SPY':
                    self.atrStocksCrossover = IndicatorExtensions.Over(shortATR, longATR)
                elif security.Symbol.Value == 'TLT':
                    self.atrBondsCrossover = IndicatorExtensions.Over(shortATR, longATR)
                                                             
    def DetermineTargetPercent(self, algorithm, symbols):
        
        """
        Description:
            Determine the target percent for each insight
        Args:
            algorithm: The algorithm instance
            symbols: The symbols to generate an insight for
        """
        
        # empty dictionary to store portfolio targets by symbol
        finalWeights = {}

        # get symbols for calculations
        calculationSymbols = [x for x in symbols if x.Value in self.parametersDict.keys()]
        
        # get historical data for calculationSymbols for the last n trading days
        history = algorithm.History(calculationSymbols, self.lookbackHistory, Resolution.Daily)                                      #Changed to Hour
        
        # empty dictionary for calculations
        calculations = {}
        
        # iterate over all symbols and perform calculations
        for symbol in calculationSymbols:
            # check if we have enough historical data, otherwise just skip this security
            if not utils.CheckHistory(symbol, history):
                algorithm.Log(str(symbol.Value) + ': skipping security due to no/not enough historical data')
                continue
            else:
                # add symbol to calculations
                calculations[symbol] = SymbolData(symbol, parametersDict=self.parametersDict)
                try:
                    # get series of daily returns
                    calculations[symbol].CalculateDailyReturnSeries(history, self.lookbackOptimization)
                    # update technical indicators
                    calculations[symbol].UpdateIndicators(history)
                except BaseException as e:
                    algorithm.Log('returning empty weights for now for: ' + str(symbol.Value)
                                  + 'due to ' + str(e) + '; we will try again at the next iteration')
                    return finalWeights
        
        # calculate optimal weights
        optWeights = self.CalculateOptimalWeights(algorithm, calculations)
        algorithm.Log('optimal weights for the period: ' + str(optWeights))
        
        if optWeights is None:
            algorithm.Log('returning empty weights due to optWeights being None; we will try again at the next iteration')
            return finalWeights
        
        # modify optimal weights using specific criteria
        finalWeights = self.FilterOptimalWeights(algorithm, calculations, optWeights)
        algorithm.Log('filtered optimal weights for the period: ' + str({symbol.Value: weight
                                                                         for symbol, weight in finalWeights.items()}))
        
        # check if we can trade the tradable symbol, otherwise we trade the original ticker
        replaceSymbol = {}
        for symbol in finalWeights:
            tradableTicker = self.parametersDict[symbol.Value]['addTicker'][1]
            if symbol.Value != tradableTicker:
                tradableSymbol = algorithm.Symbol(tradableTicker)
                # check if the price of tradableSymbol is not zero
                if algorithm.Securities[tradableSymbol].Price != 0:
                    # we trade the original ticker
                    replaceSymbol[tradableSymbol] = symbol
        for newSymbol, replacedSymbol in replaceSymbol.items():
            finalWeights[newSymbol] = finalWeights[replacedSymbol]
            finalWeights.pop(replacedSymbol)
                
        # check how much we have allocated so far to risky assets
        totalWeight = sum(finalWeights.values())
        if totalWeight >= 1:
            totalWeight = 1
        algorithm.Log('total allocation after weight filtering: ' + str(totalWeight))
        
        # allocate remaining cash to tickerCash
        for symbol in symbols:
            if symbol.Value == self.tickerCash:
                if symbol in finalWeights.keys():
                    finalWeights[symbol] = finalWeights[symbol] + (1 - totalWeight)
                else:
                    finalWeights[symbol] = 1 - totalWeight
                    
                algorithm.Log(str(self.tickerCash) + '; final allocation for tickerCash: ' + str(finalWeights[symbol]))
                
        # avoid very small numbers and make them 0
        for symbol, weight in finalWeights.items():
            if weight <= 1e-10:
                finalWeights[symbol] = 0
            
        return finalWeights
        
    def CalculateOptimalWeights(self, algorithm, calculations):
        
        """
        Description:
            Calculate the individual weights for each symbol that optimize some given objective function
        Args:
            algorithm: The algorithm instance
            calculations: Dictionary containing calculations for each symbol
        """
                
        # create a dictionary keyed by the symbols in calculations with a pandas.Series as value
        # to create a dataframe of returns
        dailyReturnsDict = {symbol.Value: symbolData.dailyReturnsSeries for symbol, symbolData in calculations.items()}
        dailyReturnsDf = pd.DataFrame(dailyReturnsDict)
        listTickers = list(dailyReturnsDf.columns)
        
        try:
            # portfolio optimizer finds the optimal weights for the given data
            bounds = [self.parametersDict[x]['optimizationBounds'] for x in dailyReturnsDf.columns]
            listOptWeights = self.optimizer.Optimize(objFunction=self.objFunction, dailyReturnsDf=dailyReturnsDf,
                                                     bounds=bounds)
        except BaseException as e:
            algorithm.Log('Optimize failed due to ' + str(e))
            return None
        
        # create dictionary with the optimal weights by symbol
        weights = {listTickers[i]: listOptWeights[i] for i in range(len(listTickers))}
        
        # avoid very small numbers and make them 0
        for ticker, weight in weights.items():
            if weight <= 1e-10:
                weights[ticker] = 0
            
        return weights

    def CheckYieldSignalCrisis(self):

        """ Check the Yield condition """

        yieldSignalCrisis = False

        # get the last six months of historical USTREASURY/YIELD values
        histYield = self.algo.History([self.treasuryRatesSymbol], self.lookbackNegativeYield + 1,
                                      Resolution.Daily).loc[self.treasuryRatesSymbol]
        tenYr = histYield['10 yr'] # get the 10-year yield
        threeMo = histYield['3 mo'] # get the 3-month yield
        tenYrMinusThreeMo = tenYr - threeMo # calculate the difference between the two
        indexNegative = tenYrMinusThreeMo[tenYrMinusThreeMo < 0].head(1).index
        # check if there was actually some negative yield values
        if len(indexNegative) > 0:
            cutOff = indexNegative[0]
            # filter the series for days after that day with negative value
            afterNegative = tenYrMinusThreeMo[tenYrMinusThreeMo.index > cutOff]
            # check if at some point it reached our startCrisisYieldValue
            if len(afterNegative) > 0 and max(afterNegative) > self.startCrisisYieldValue:
                yieldSignalCrisis = True

        return yieldSignalCrisis
        
    def FilterOptimalWeights(self, algorithm, calculations, optWeights):
        
        """
        Description:
            Filter and modify the optimal weights using a combination of technical indicators
        Args:
            algorithm: The algorithm instance
            calculations: Dictionary containing calculations for each symbol
            optWeights: Dictionary with the optimal weights by symbol
        """

        # check for yield signal crisis
        yieldSignalCrisis = self.CheckYieldSignalCrisis()
        
        # empty dictionary to store weights
        weights = {}
        
        # loop through calculations and check conditions for weight filtering ------------------------
        for symbol, symbolData in calculations.items():
            if symbolData.SMA.IsReady and symbolData.MACD.IsReady:
                currentPrice = algorithm.ActiveSecurities[symbol].Price

                # check if sma condition is met and act accordingly ----------------------------------
                smaLowerBoundCondition = self.parametersDict[symbol.Value]['sma'][1][0]
                smaUpperBoundCondition = self.parametersDict[symbol.Value]['sma'][1][1]
                smaConditionWeight = self.parametersDict[symbol.Value]['sma'][2]
                
                algorithm.Log(str(symbol.Value)
                              + '; current price: ' + str(round(currentPrice, 2))
                              + '; SMA: ' + str(round(symbolData.SMA.Current.Value, 2))
                              + '; Price vs SMA: ' + str(round((currentPrice / symbolData.SMA.Current.Value) - 1, 2)))
                
                if (currentPrice <= symbolData.SMA.Current.Value * (1 + smaLowerBoundCondition)
                        or currentPrice >= symbolData.SMA.Current.Value * (1 + smaUpperBoundCondition)):
                    weights[symbol] = min(optWeights[symbol.Value], smaConditionWeight)
                    algorithm.Log(str(symbol.Value)
                                  + '; modifying weight due to sma filtering from '
                                  + str(optWeights[symbol.Value]) + ' to ' + str(weights[symbol]))
                else:
                    weights[symbol] = optWeights[symbol.Value]
                    
                smaModifiedWeight = weights[symbol]
                
                # check if macd condition is met and act accordingly ----------------------------------
                macdCondition = self.parametersDict[symbol.Value]['macd'][1]
                macdConditionWeight = self.parametersDict[symbol.Value]['macd'][2]
                # calculate our macd vs signal score between -1 and 1
                macdMinusSignal = symbolData.MACD.Current.Value - symbolData.MACD.Signal.Current.Value
                macdVsSignalScore = macdMinusSignal / (1 + abs(macdMinusSignal))
                
                algorithm.Log(str(symbol.Value)
                              + '; MACD: ' + str(round(symbolData.MACD.Current.Value, 2))
                              + '; MACD Signal: ' + str(round(symbolData.MACD.Signal.Current.Value, 2))
                              + '; MACD vs Signal Score: ' + str(round(macdVsSignalScore, 2)))
                
                if macdVsSignalScore <= macdCondition:
                    weights[symbol] = min(smaModifiedWeight, macdConditionWeight)
                    algorithm.Log(str(symbol.Value)
                                  + '; modifying weight due to macd filtering from '
                                  + str(smaModifiedWeight) + ' to ' + str(weights[symbol]))
                else:
                    weights[symbol] = smaModifiedWeight
                    
                macdModifiedWeight = weights[symbol]

                # check if yield condition is met and act accordingly ----------------------------------
                activateYield = self.parametersDict[symbol.Value]['yield'][0]
                yieldConditionWeight = self.parametersDict[symbol.Value]['yield'][1]

                if yieldSignalCrisis and activateYield:
                    weights[symbol] = min(macdModifiedWeight, yieldConditionWeight)
                else:
                    weights[symbol] = macdModifiedWeight
                    
            else:
                weights[symbol] = optWeights[symbol.Value]
                algorithm.Log(str(symbol.Value) + '; indicators are not ready so assign default weight')

        return weights
        
    def CalculateModelLeverageFactor(self):
        sp = 0
        peakDD = 15  #Set up as 50% of the peak DD in observable history. At this level of DD, the algo will go "all-in"
        minallocation = 1
        
        # Calculates the scaling percentage based on a straight-line relationship between DD and Scaling
        # Minimum leveragefactor of 50% that then scales up to a max of 100% when DD increases to 15%
        #for key in self.algo.alphasDD:
        #    if key == self.Name:
        #        self.algo.leverageFactors[key] = 1
        #        #self.algo.leverageFactors[key] = max(minallocation,min(1, sp + ((1-sp)/peakDD)*float(self.algo.alphasDD[key])))
        #        #self.algo.leverageFactors[key] = max(0.5,min(1, (1) - (sp/peakDD)*float(self.algo.alphasDD[key])))
                
        for key in self.weightsDict:
            self.weightsDict[key] = self.weightsDict[key]* float(self.leverageFactor)
            
        # Adds the non-leveraged portion to the "cash" portion of the algo
        for symbol in self.weightsDict.keys():
            if symbol.Value == 'IEF': 
                self.weightsDict[symbol] = self.weightsDict[symbol] + max(0,1-float(self.leverageFactor))


class SymbolData:
    
    def __init__(self, symbol, parametersDict):
        
        self.Symbol = symbol
        self.dailyReturnsSeries = None
        
        smaPeriod = parametersDict[symbol.Value]['sma'][0]
        self.SMA = SimpleMovingAverage(smaPeriod)
        
        macdFastPeriod = parametersDict[self.Symbol.Value]['macd'][0][0]
        macdSlowPeriod = parametersDict[self.Symbol.Value]['macd'][0][1]
        macdSignalPeriod = parametersDict[self.Symbol.Value]['macd'][0][2]
        self.MACD = MovingAverageConvergenceDivergence(macdFastPeriod, macdSlowPeriod, macdSignalPeriod,
                                                       MovingAverageType.Exponential)
    
    def CalculateDailyReturnSeries(self, history, lookbackOptimization):

        """ Calculate the daily returns series for each security """
        
        tempReturnsSeries = history.loc[str(self.Symbol)]['close'].pct_change(periods=2).dropna()  # 2-day returns
        self.dailyReturnsSeries = tempReturnsSeries[-lookbackOptimization:]
        
    def UpdateIndicators(self, history):

        """ Update the indicators with historical data """
        
        for index, row in history.loc[str(self.Symbol)].iterrows():
            self.SMA.Update(index, row['close'])
            self.MACD.Update(index, row['close'])