Overall Statistics |
Total Trades 784 Average Win 0.60% Average Loss -0.04% Compounding Annual Return 24.689% Drawdown 26.500% Expectancy 14.899 Net Profit 840.602% Sharpe Ratio 1.559 Probabilistic Sharpe Ratio 88.265% Loss Rate 7% Win Rate 93% Profit-Loss Ratio 16.00 Alpha 0.194 Beta 0.576 Annual Standard Deviation 0.17 Annual Variance 0.029 Information Ratio 0.898 Tracking Error 0.157 Treynor Ratio 0.461 Total Fees $1521.10 |
# Inspired by the theory here: # https://seekingalpha.com/article/4299701-leveraged-etfs-for-long-term-investing class MultidimensionalTransdimensionalPrism(QCAlgorithm): def Initialize(self): self.SetStartDate(2010, 2, 1) # Earliest start date for all ETFs in universe 2/1/10 self.SetEndDate(2020, 3, 27) self.SetCash(100000) self.AddEquity("TQQQ", Resolution.Hour) # 3x QQQ self.AddEquity("UBT", Resolution.Hour) # 3x 20yr Treasury self.AddEquity("UST", Resolution.Hour) # 3x 10yr Treasury self.tkr = ["TQQQ", "UBT", "UST"] self.rebal = 2 # Rebalance every 2 weeks self.rebalTimer = self.rebal - 1 # Initialize to trigger first week self.flag1 = 0 # Flag to initate trades # Increment rebalance timer at every week start self.Schedule.On(self.DateRules.WeekStart("UST"), self.TimeRules.AfterMarketOpen("UST", 150), self.Rebalance) def OnData(self, data): # If ready to rebalance, set each holding at 1/3 if self.flag1 == 1: for stock in self.tkr: self.SetHoldings(stock, 0.33) self.rebalTimer = 0 # Reset rebalance timer self.flag1 = 0 def Rebalance(self): self.rebalTimer +=1 if self.rebalTimer == self.rebal: self.flag1 = 1