Overall Statistics
Total Orders
7
Average Win
13.29%
Average Loss
-3.51%
Compounding Annual Return
22.296%
Drawdown
22.900%
Expectancy
0.595
Start Equity
100000.0
End Equity
103704.11
Net Profit
3.704%
Sharpe Ratio
0.407
Sortino Ratio
0.629
Probabilistic Sharpe Ratio
39.293%
Loss Rate
67%
Win Rate
33%
Profit-Loss Ratio
3.78
Alpha
0.267
Beta
1.232
Annual Standard Deviation
0.504
Annual Variance
0.254
Information Ratio
0.521
Tracking Error
0.49
Treynor Ratio
0.167
Total Fees
$0.00
Estimated Strategy Capacity
$80000.00
Lowest Capacity Asset
BTCUSD 2XR
Portfolio Turnover
10.47%
from AlgorithmImports import *

class TopCryptoStrategy(QCAlgorithm):
    def Initialize(self):
        self.SetStartDate(2024, 3, 1)  # Set Start Date
        self.SetEndDate(2024, 6, 1)
        self.SetCash(100000)  # Set Strategy Cash

        # Define the symbols
        self.crypto_symbols = ["BTCUSD"]
        self.SetBenchmark("SPY")

        # Attempt to add each cryptocurrency and stock
        self.active_symbols = []
        for symbol in self.crypto_symbols:
            try:
                self.AddCrypto(symbol, Resolution.MINUTE)
                self.active_symbols.append(symbol)
            except Exception as e:
                self.Debug(f"Unable to add symbol: {symbol}. Exception: {e}")

        

        # Define the technical indicators
        self.supertrend1 = {}
        self.supertrend2 = {}
        self.rsi = {}
        self.ema100 = {}
        self.weekly_twap = {}
        self.entry_prices = {}

        for symbol in self.active_symbols:
            self.supertrend1[symbol] = self.STR(symbol, 10, 10, MovingAverageType.Wilders)
            self.supertrend2[symbol] = self.STR(symbol, 10, 3, MovingAverageType.Wilders)
            self.rsi[symbol] = self.RSI(symbol, 10, MovingAverageType.Wilders, Resolution.MINUTE)
            self.ema100[symbol] = self.EMA(symbol, 100, Resolution.MINUTE)
            self.weekly_twap[symbol] = self.WeeklyTwap(symbol, 5)
            self.entry_prices[symbol] = None

        self.SetWarmUp(100, Resolution.MINUTE)  # Warm up period for 100 days

    def WeeklyTwap(self, symbol, num_weeks):
        twap = self.SMA(symbol, num_weeks * 5, Resolution.MINUTE)  # Assuming 5 trading days per week
        return twap

    def OnData(self, data):
        if self.IsWarmingUp:
            return

        for symbol in self.active_symbols:
            if not data.Bars.ContainsKey(symbol):
                continue

            bar = data.Bars[symbol]

            # Get current values
            current_price = bar.Close
            supertrend1 = self.supertrend1[symbol].Current.Value
            supertrend2 = self.supertrend2[symbol].Current.Value
            rsi = self.rsi[symbol].Current.Value
            ema100 = self.ema100[symbol].Current.Value
            weekly_twap = self.weekly_twap[symbol].Current.Value

            # Define factor based on asset type
            factor = 1.2

            # Entry condition
            if self.entry_prices[symbol] is None:
                if ( rsi < 99):  # Use appropriate factor
                    self.Debug(f"{symbol}: Supertrend1={supertrend1}, Supertrend2={supertrend2}, RSI={rsi}, EMA100={ema100}, Weekly TWAP={weekly_twap}")
                    self.SetHoldings(symbol, 1.0)
                    self.entry_prices[symbol] = current_price
            
            # Exit condition
            elif rsi < 1:
                self.Liquidate(symbol)
                self.entry_prices[symbol] = None