Overall Statistics
Total Orders
152
Average Win
9.81%
Average Loss
-6.12%
Compounding Annual Return
22.091%
Drawdown
39.300%
Expectancy
0.548
Net Profit
635.943%
Sharpe Ratio
0.67
Sortino Ratio
0.77
Probabilistic Sharpe Ratio
10.910%
Loss Rate
41%
Win Rate
59%
Profit-Loss Ratio
1.60
Alpha
0.086
Beta
1.071
Annual Standard Deviation
0.248
Annual Variance
0.062
Information Ratio
0.47
Tracking Error
0.194
Treynor Ratio
0.155
Total Fees
$243.98
Estimated Strategy Capacity
$22000000.00
Lowest Capacity Asset
CAT R735QTJ8XC9X
Portfolio Turnover
2.75%
from AlgorithmImports import *

class GrowthStocksAlgorithm(QCAlgorithm):
    def Initialize(self):
        self.SetStartDate(2014, 1, 1)  # Set Start Date
        self.SetEndDate(2024, 1, 1)    # Set End Date
        self.SetCash(10000)           # Set Strategy Cash
        
        self.UniverseSettings.Resolution = Resolution.Daily
        self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction)
        
        self.Schedule.On(self.DateRules.MonthStart(), self.TimeRules.At(10, 0), self.RebalancePortfolio)
        self.changes = []  # To track added securities

    def CoarseSelectionFunction(self, coarse):
        filtered_coarse = [x for x in coarse if x.DollarVolume > 1e6 and x.Price > 5]
        sorted_by_liquidity = sorted(filtered_coarse, key=lambda x: x.DollarVolume, reverse=True)
        selected_symbols = [x.Symbol for x in sorted_by_liquidity if x.Price * x.DollarVolume / x.Price > 2e9]
        return selected_symbols[:100]

    def FineSelectionFunction(self, fine):
        filtered_fine = [x for x in fine if x.OperationRatios.RevenueGrowth.OneYear > 0.0
                        and x.OperationRatios.NetIncomeGrowth.OneYear > 0.0
                        and x.EarningReports.BasicEPS.TwelveMonths > 0
                        and (x.ValuationRatios.PEGRatio > 0 and x.ValuationRatios.PEGRatio < 1.5)
                        and x.FinancialStatements.BalanceSheet.TotalEquity.Value > 0]
        
        sorted_by_growth = sorted(filtered_fine, key=lambda x: x.OperationRatios.RevenueGrowth.OneYear, reverse=True)
        return [x.Symbol for x in sorted_by_growth[:10]]
    
    def RebalancePortfolio(self):
        if self.changes is None or len(self.changes) == 0:
            return
        
        weight_per_security = 1.0 / len(self.changes)
        
        for security in self.Securities.Values:
            if security.Symbol in self.changes and not security.Invested:
                self.SetHoldings(security.Symbol, weight_per_security)
            elif security.Invested and security.Symbol not in self.changes:
                self.Liquidate(security.Symbol)
                
        self.changes = []  # Reset the changes after rebalancing

    def OnSecuritiesChanged(self, changes):
        self.changes = [x.Symbol for x in changes.AddedSecurities]