Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Sortino Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio -0.99 Tracking Error 0.146 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset Portfolio Turnover 0% |
# region imports from AlgorithmImports import * # endregion class FatBlackDuck(QCAlgorithm): def SymbolData(self, symbol, lookback): self._consolidator = TradeBarConsolidator(timedelta(days=5)) history_df = self.History(symbol, lookback) for bar in history_df.itertuples(): trade_bar = TradeBar(bar.Index[2], symbol, bar.open, bar.high, bar.low, bar.close, bar.volume, timedelta(1)) self.Update(trade_bar) @property def IsReady(self): return self.Prices.IsReady def Update(self, trade_bar): self._consolidator.Update(trade_bar) def Initialize(self): self.SetStartDate(2022, 6, 20) self.SetCash(100000) self.lookback = 1000 future_contract_1 = self.AddFuture(Futures.Energies.MicroCrudeOilWTI, Resolution.Daily) future_contract_2 = self.AddFuture(Futures.Metals.MicroGold, Resolution.Daily) future_contract_1.SetFilter(0, 50) future_contract_2.SetFilter(0, 70) self.symbol_1 = future_contract_1.Symbol self.symbol_2 = future_contract_2.Symbol self.symbol_data_1 = self.SymbolData(self.symbol_1, self.lookback) self.symbol_data_2 = self.SymbolData(self.symbol_2, self.lookback) self.Log(self.symbol_data_1) self.Log(self.symbol_data_2)