Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio -0.923 Tracking Error 0.17 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset |
# FIR_Filter custom indicator for prices SMA # Inspired by Warren Harding and Derek Melchin for their Trend0 algorithms # https://www.quantconnect.com/forum/discussion/11613/algo-FIR_Filter/p1 # ---------------------------------------- STOCK = 'AMZN'; PERIOD = 63; POWER = 0; # ---------------------------------------- import numpy as np class UglyBrownDolphin(QCAlgorithm): def Initialize(self): self.SetStartDate(2016, 6, 10) self.SetCash(100000) self.stock = self.AddEquity(STOCK, Resolution.Daily).Symbol self.indicator = FIR_Filter('FIR_Filter', period = PERIOD, power = POWER) self.RegisterIndicator(self.stock, self.indicator, Resolution.Daily) self.sma = self.SMA(self.stock, PERIOD, Resolution.Daily) self.SetWarmUp(PERIOD) def OnData(self, data): if self.IsWarmingUp or not self.indicator.IsReady: return price = self.Securities[self.stock].Price mean = self.History([self.stock], PERIOD, Resolution.Daily)['close'].unstack(level=0).mean() self.Plot("Indicator", "mean", mean) self.Plot("Indicator", "ma", self.indicator.Value) self.Plot("Indicator", "sma", self.sma.Current.Value) class FIR_Filter(PythonIndicator): def __init__(self, name, period, power): self.Name = name self.period = period self.power = power self.Time = datetime.min self.Value = 0 self.prices = np.array([]) def Update(self, input): self.prices = np.append(self.prices, input.Close)[-self.period:] if len(self.prices) != self.period: self.Value = 0 return False self.Value = self.calc_filter() return True def calc_filter(self): prices = np.array([]) for i in range(len(self.prices)): price = self.prices[i] prices = np.append(prices, price) return self.power_weighted_moving_average(prices) def power_weighted_moving_average(self, prices): return self.weighted_average(prices, self.power_weights(len(prices))) def power_weights(self, length): weights = np.array([]) for i in range(length): w = i + 1 weights = np.append(weights, w**self.power) return weights def weighted_average(self, prices, weights): products = [] for i in range(len(prices)): products.append(prices[i] * weights[i]) return sum(products) / sum(weights)