Overall Statistics |
Total Trades 37552 Average Win 0.21% Average Loss -0.13% Compounding Annual Return 50285.882% Drawdown 12.200% Expectancy 0.517 Net Profit 31685676.536% Sharpe Ratio 265.58 Probabilistic Sharpe Ratio 100% Loss Rate 41% Win Rate 59% Profit-Loss Ratio 1.58 Alpha 75.228 Beta -0.109 Annual Standard Deviation 0.283 Annual Variance 0.08 Information Ratio 226.173 Tracking Error 0.332 Treynor Ratio -687.837 Total Fees $0.00 Estimated Strategy Capacity $340000.00 Lowest Capacity Asset ETHUSD XJ |
#region imports from AlgorithmImports import * #endregion from sklearn.linear_model import LinearRegression import numpy as np class PairsTradingAlgorithm(QCAlgorithm): closes_by_symbol = {} def Initialize(self): self.SetStartDate(2020,11,14) self.SetEndDate(2025,1,1) self.SetCash(1000000) self.threshold = 1. self.numdays = 369 #369 set the length of training period #pairs: MSFT: GOOG / IWN: SPY / XLK:QQQ #def: XLK #try: AAPL # self.x_symbol = self.AddEquity("XLK", Resolution.Hour).Symbol #Minute # #def: QQQ # self.y_symbol = self.AddEquity("QQQ", Resolution.Daily).Symbol #Hour or Minute self.x_symbol = self.AddCrypto("BTCUSD", Resolution.Minute).Symbol #Minute self.y_symbol = self.AddCrypto("ETHUSD", Resolution.Hour).Symbol #Hour or Minute # consolidator = TradeBarConsolidator(TimeSpan.FromMinutes(30)) ## Selected resolution is hourly, so this will create a 6-hour consolidator # consolidator.DataConsolidated += self.OnDataConsolidated ## Tell consolidator which function to run at consolidation intervals # self.SubscriptionManager.AddConsolidator("XLK", consolidator) ## Add consolidator to algorithm # self.x_symbol = self.SubscriptionManager.AddConsolidator("XLK", consolidator) #hour or minute # self.SetWarmup(250, Resolution.Minute) for symbol in [self.x_symbol, self.y_symbol]: history = self.History(symbol, self.numdays, Resolution.Minute) self.closes_by_symbol[symbol] = history.loc[symbol].close.values \ if not history.empty else np.array([]) def OnData(self, data): for symbol in self.closes_by_symbol.keys(): if not data.Bars.ContainsKey(symbol): return for symbol, closes in self.closes_by_symbol.items(): self.closes_by_symbol[symbol] = np.append(closes, data[symbol].Close)[-self.numdays:] log_close_x = np.log(self.closes_by_symbol[self.x_symbol]) log_close_y = np.log(self.closes_by_symbol[self.y_symbol]) spread, beta = self.regr(log_close_x, log_close_y) mean = np.mean(spread) std = np.std(spread) x_holdings = self.Portfolio[self.x_symbol] if x_holdings.Invested: # if x_holdings.IsShort and spread[-1] <= (3*mean) or \ # x_holdings.IsLong and spread[-1] >= (3*mean): if x_holdings.IsShort and spread[-1] >= mean or \ x_holdings.IsLong and spread[-1] <= mean: self.Liquidate() else: if beta < 1: x_weight = 0.5 y_weight = 0.5 else: x_weight = 0.5 y_weight = 0.5 # else: # if beta < 1: # x_weight = 0.5 # y_weight = 0.5 / beta # else: # x_weight = 0.5 / beta # y_weight = 0.5 # if not self.Portfolio.Invested and spread[-1] < mean - self.threshold * std: # self.SetHoldings(self.y_symbol, (y_weight)) # self.SetHoldings(self.x_symbol, (-x_weight)) # if not self.Portfolio.Invested and spread[-1] > mean + self.threshold * std: # self.SetHoldings(self.x_symbol, (x_weight)) # self.SetHoldings(self.y_symbol, (-y_weight)) if spread[-1] < mean - self.threshold * std: self.SetHoldings(self.y_symbol, (y_weight*.5)) self.SetHoldings(self.x_symbol, (-x_weight*.5)) if spread[-1] > mean + self.threshold * std: self.SetHoldings(self.x_symbol, (x_weight*.5)) self.SetHoldings(self.y_symbol, (-y_weight*.5)) # if spread[-1] < mean - self.threshold * std: # self.SetHoldings(self.y_symbol, -x_weight) # self.SetHoldings(self.x_symbol, y_weight) # if spread[-1] > mean + self.threshold * std: # self.SetHoldings(self.x_symbol, y_weight) # self.SetHoldings(self.y_symbol, -x_weight) # if spread[-1] < mean - self.threshold * std: # self.SetHoldings(self.y_symbol, -y_weight) # self.SetHoldings(self.x_symbol, x_weight) # if spread[-1] > mean + self.threshold * std: # self.SetHoldings(self.x_symbol, -x_weight) # self.SetHoldings(self.y_symbol, y_weight) scale = 10000 self.Plot("Spread", "Top", (mean + self.threshold * std) * scale) self.Plot("Spread", "Value", spread[-1] * scale) self.Plot("Spread", "Mean", mean * scale) self.Plot("Spread", "Bottom", (mean - self.threshold * std) * scale) self.Plot("State", "Value", np.sign(x_holdings.Quantity)) def regr(self, x, y): regr = LinearRegression() x_constant = np.column_stack([np.ones(len(x)), x]) regr.fit(x_constant, y) beta = regr.coef_[1] alpha = regr.intercept_ spread = y - x*beta - alpha return spread, beta