Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio -0.86 Tracking Error 0.192 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset |
## https://www.quantconnect.com/forum/discussion/7984/trading-volatility-svxy-uvxy-with-momentum-indicators/p1 --> source ## https://www.quantconnect.com/forum/discussion/7928/cash-vix-term-structure/p1 --> getting 9d vix price # from QuantConnect.Data.Custom.CBOE import CBOE class VentralTachyonAtmosphericScrubbers(QCAlgorithm): def Initialize(self): self.SetStartDate(2017, 12, 6) # self.SetEndDate(2018, 1, 1) self.SetCash(500) self.vix = self.AddData(CBOE, "VIX").Symbol self.vix9d = self.AddData(CBOE, "VIX9D").Symbol self.vix3m = self.AddData(CBOE, "VIX3M").Symbol self.vix6m = self.AddData(CBOE, "VIX6M").Symbol def OnData(self, data): if not data.ContainsKey("VIX3M.CBOE") or not data.ContainsKey("VIX.CBOE"): return self.Plot("VIX Data", "VIX", data[self.vix].Close) self.Plot("VIX9D Data", "VIX9M", data[self.vix9d].Close) self.Plot("VIX3M Data", "VIX3M", data[self.vix3m].Close) self.Plot("VIX6M Data", "VIX6M", data[self.vix6m].Close)