Overall Statistics |
Total Trades 33 Average Win 4.70% Average Loss -1.33% Compounding Annual Return 3.788% Drawdown 21.700% Expectancy 0.809 Net Profit 13.786% Sharpe Ratio 0.286 Loss Rate 60% Win Rate 40% Profit-Loss Ratio 3.52 Alpha 0.034 Beta 0.056 Annual Standard Deviation 0.141 Annual Variance 0.02 Information Ratio -0.4 Tracking Error 0.181 Treynor Ratio 0.716 Total Fees $203.01 |
using MathNet.Numerics.LinearAlgebra; using MathNet.Numerics.Statistics; namespace QuantConnect.Algorithm.CSharp { /// <summary> /// This algorithm uses Math.NET Numerics library, specifically Linear Algebra object (Vector and Matrix) and operations, in order to solve a portfolio optimization problem. /// </summary> public class PortfolioOptimizationNumericsAlgorithm : QCAlgorithm { private string[] _symbols = new string[] { // Using Meb Faber's GTAA paper assets: "SPY", // "EFA", // "TIP", // "GSG", // "VNQ" // // Find more symbols here: http://quantconnect.com/data }; private const double _targetReturn = 0.1; private const double _riskFreeRate = 0.01; private double _lagrangeMultiplier; private double _portfolioRisk; private Matrix<double> Sigma; private List<SymbolData> SymbolDataList; public Vector<double> DiscountMeanVector { get { if (SymbolDataList == null) { return null; } return Vector<double>.Build.DenseOfArray(SymbolDataList.Select(x => (double)x.Return).ToArray()) - Vector<double>.Build.Dense(SymbolDataList.Count, _riskFreeRate); } } /// <summary> /// Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized. /// </summary> public override void Initialize() { SetCash(100000); //Set Strategy Cash SetStartDate(2013, 1, 1); //Set Start Date SetEndDate(DateTime.Now.AddDays(-1)); //Set End Date SymbolDataList = new List<SymbolData>(); foreach (var symbol in _symbols) { AddEquity(symbol, Resolution.Daily); SymbolDataList.Add(new SymbolData(symbol, History(symbol, 200, Resolution.Daily))); } Schedule.On(DateRules.MonthStart(), TimeRules.At(new TimeSpan(12, 0, 0)), () => { ComputeWeights(); foreach (var symbolData in SymbolDataList.OrderBy(x => x.Weight)) { SetHoldings(symbolData.Symbol, symbolData.Weight); Debug(Time.ToShortDateString() + " Purchased Stock: " + symbolData); } }); //ComputePortfolioRisk(); } /// <summary> /// OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here. /// </summary> /// <param name="data">Slice object keyed by symbol containing the stock data</param> public override void OnData(Slice data) { foreach (var symbolData in SymbolDataList) { if(data.ContainsKey(symbolData.Symbol)) { symbolData.Update(data[symbolData.Symbol]); } } } /// <summary> /// Computes Lagrange Multiplier /// </summary> private void ComputeLagrangeMultiplier() { var denominatorMatrix = DiscountMeanVector * Sigma.Inverse() * DiscountMeanVector.ToColumnMatrix(); var denominator = denominatorMatrix.ToArray().First(); _lagrangeMultiplier = denominator == 0 ? 0.0 : (_targetReturn - _riskFreeRate) / denominator; } /// <summary> /// Computes weight for each risky asset /// </summary> private void ComputeWeights() { // Diagonal Matrix with each security risk (standard deviation) var S = Matrix<double>.Build.DenseOfDiagonalArray(SymbolDataList.Select(x => (double)x.Risk).ToArray()); // Computes Correlation Matrix (using Math.NET Numerics Statistics) var allHistoryBars = new List<double[]>(); SymbolDataList.ForEach(x => allHistoryBars.Add(x.History)); var R = Correlation.PearsonMatrix(allHistoryBars); // Computes Covariance Matrix (using Math.NET Numerics Linear Algebra) Sigma = S * R * S; ComputeLagrangeMultiplier(); var weights = _lagrangeMultiplier * Sigma.Inverse() * DiscountMeanVector.ToColumnMatrix(); for (var i = 0; i < weights.RowCount; i++) { SymbolDataList[i].SetWeight(weights.ToArray()[i, 0]); } } /// <summary> /// Computes Portfolio Risk /// </summary> private void ComputePortfolioRisk() { var weights = Vector<double>.Build.DenseOfArray(SymbolDataList.Select(x => (double)x.Return).ToArray()); var portfolioVarianceMatrix = weights * Sigma * weights.ToColumnMatrix(); _portfolioRisk = Math.Sqrt(portfolioVarianceMatrix.ToArray().First()); Log(string.Format("Lagrange Multiplier: {0,7:F4}", _lagrangeMultiplier)); Log(string.Format("Portfolio Risk: {0,7:P2} ", _portfolioRisk)); } /// <summary> /// Symbol Data class to store security data (Return, Risk, Weight) /// </summary> class SymbolData { private RateOfChange _roc; private RollingWindow<double> _rollingHistory; private SimpleMovingAverage _sma; private StandardDeviation _std; public Symbol Symbol { get; private set; } public decimal Return { get { return _sma.Current; } } public decimal Risk { get { return _std.Current; } } public decimal Weight { get; private set; } public double[] History { get { return _rollingHistory.Select(x => x).ToArray(); } } public SymbolData(Symbol symbol, IEnumerable<BaseData> history) { Symbol = symbol; Weight = 0m; _roc = new RateOfChange(2); _sma = new SimpleMovingAverage(200).Of(_roc); _std = new StandardDeviation(200).Of(_roc); _rollingHistory = new RollingWindow<double>(200); foreach (var data in history) { Update(data); } } public void Update(BaseData data) { if(data == null) { return; } else { _roc.Update(data.Time, data.Value); _rollingHistory.Add((double)data.Value); } } public void SetWeight(double value) { Weight = value.IsNaNOrZero() ? 0m : (decimal)value; } public override string ToString() { return string.Format("{0}: {1,10:P2}\t{2,10:P2}\t{3,10:P2}", Symbol.Value, Weight, Return, Risk); } } } }