Overall Statistics |
Total Trades 65 Average Win 0% Average Loss 0% Compounding Annual Return 1.519% Drawdown 0.300% Expectancy 0 Net Profit 0.480% Sharpe Ratio 2.413 Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0.011 Beta 0.112 Annual Standard Deviation 0.005 Annual Variance 0 Information Ratio -0.782 Tracking Error 0.005 Treynor Ratio 0.111 Total Fees $65.00 |
from BankingIndustryStocks import BankingIndustryStocks class BankingSectorUniverseAlgorithm(QCAlgorithm): def Initialize(self): self.SetStartDate(2019, 1, 1) # Set Start Date self.SetCash(100000) # Set Strategy Cash # self.AddEquity("SPY", Resolution.Minute) self.SetUniverseSelection(BankingIndustryStocks()) def OnData(self, data): for key in data.Keys: if not self.Portfolio[key].Invested: self.Log(f'Purchased {key.Value} stock') self.MarketOrder(key, 1) def OnSecuritiesChanged(self, changes): for security in changes.RemovedSecurities: self.Log(f'{security.Symbol.Value} removed from to the universe') for security in changes.AddedSecurities: self.Log(f'{security.Symbol.Value} added to the universe')
from Selection.FundamentalUniverseSelectionModel import FundamentalUniverseSelectionModel class BankingIndustryStocks(FundamentalUniverseSelectionModel): ''' This module selects the most liquid stocks listed on the Nasdaq Stock Exchange. ''' def __init__(self, filterFineData = True, universeSettings = None, securityInitializer = None): '''Initializes a new default instance of the TechnologyUniverseModule''' super().__init__(filterFineData, universeSettings, securityInitializer) self.numberOfSymbolsCoarse = 1000 self.numberOfSymbolsFine = 100 self.dollarVolumeBySymbol = {} self.symbols = [] self.lastMonth = -1 def SelectCoarse(self, algorithm, coarse): ''' Performs a coarse selection: -The stock must have fundamental data -The stock must have positive previous-day close price -The stock must have positive volume on the previous trading day ''' if algorithm.Time.month == self.lastMonth: return self.symbols filtered = [x for x in coarse if x.HasFundamentalData and x.Volume > 0 and x.Price > 0] sortedByDollarVolume = sorted(filtered, key = lambda x: x.DollarVolume, reverse=True)[:self.numberOfSymbolsCoarse] self.symbols.clear() self.dollarVolumeBySymbol.clear() for x in sortedByDollarVolume: self.symbols.append(x.Symbol) self.dollarVolumeBySymbol[x.Symbol] = x.DollarVolume return self.symbols def SelectFine(self, algorithm, fine): ''' Performs a fine selection for companies in the Morningstar Banking Sector ''' if algorithm.Time.month == self.lastMonth: return self.symbols self.lastMonth = algorithm.Time.month # Filter stocks filteredFine = [x for x in fine if x.AssetClassification.MorningstarIndustryGroupCode == MorningstarIndustryGroupCode.Banks] sortedByDollarVolume = [] # Sort stocks on dollar volume sortedByDollarVolume = sorted(filteredFine, key = lambda x: self.dollarVolumeBySymbol[x.Symbol], reverse=True) self.symbols = [x.Symbol for x in sortedByDollarVolume[:self.numberOfSymbolsFine]] return self.symbols