Overall Statistics |
Total Trades 268 Average Win 0.42% Average Loss -0.25% Compounding Annual Return 103.588% Drawdown 4.400% Expectancy 0.660 Net Profit 24.307% Sharpe Ratio 5.508 Probabilistic Sharpe Ratio 99.688% Loss Rate 38% Win Rate 62% Profit-Loss Ratio 1.68 Alpha 0.642 Beta 0.1 Annual Standard Deviation 0.118 Annual Variance 0.014 Information Ratio 3.6 Tracking Error 0.158 Treynor Ratio 6.515 Total Fees $327.95 Estimated Strategy Capacity $82000000.00 Lowest Capacity Asset SPY R735QTJ8XC9X |
import numpy as np import pandas as pd import datetime as datetime import statsmodels.formula.api as sm # from pandas import datetime import statsmodels.tsa.stattools as ts from pair import * from QuantConnect import * from QuantConnect.Algorithm import * class PairsTrading(QCAlgorithm): def __init__(self): self.symbols = ['SPY', 'VXX'] self.data_resolution = 1 # one minute? self.num_bar = 23400 # 6.5*60*60/(self.data_resolution) # 3-month period, used for pair selection criteria self.one_month = 11700 # 6.5*20*60/(self.data_resolution) self.selected_num = 1 self.pair_num = 1 self.count = 0 # counts number of datapoints received self.pair_list = [] self.selected_pair = [] self.trading_pairs = [] self.generate_count = 0 self.data_count = 0 def Initialize(self): self.SetStartDate(2021,10,1) self.SetEndDate(2022,1,20) self.SetCash(50000) self.BIC = float(self.GetParameter("BIC")) # -3 self.pair_threshold = float(self.GetParameter("pair_threshold")) # -0.7 self.open_size = float(self.GetParameter("open_size")) # 2.25 self.close_size = float(self.GetParameter("close_size")) # 1.75 self.stop_loss = float(self.GetParameter("stop_loss")) # 20 self.close_size_b = self.open_size + (self.open_size - self.close_size) for i in range(len(self.symbols)): equity = self.AddEquity(self.symbols[i],Resolution.Second).Symbol self.symbols[i] = equity self.symbols[i].prices = [] self.symbols[i].dates = [] self.Debug(equity) def generate_pairs(self): # self.Debug('generating pairs') for i in range(len(self.symbols)): for j in range(i+1,len(self.symbols)): self.pair_list.append(pairs(self.symbols[i],self.symbols[j])) # for x in range(len(self.pair_list)): # self.Debug('pairs list before: %s'%(str(self.pair_list[x]))) self.pair_list = [x for x in self.pair_list if x.cor <= self.pair_threshold] # self.pair_list.sort(key = lambda x: x.cor, reverse = True) # if len(self.pair_list) > self.pair_num: # self.pair_list = self.pair_list[:self.pair_num] # for x in range(len(self.pair_list)): # self.Debug('pairs list after: %s'%(str(self.pair_list[x]))) def OnData(self,data): if not self.Securities[self.symbols[0]].Exchange.ExchangeOpen: return #else: # self.Debug('exchange open') #data aggregation # if self.data_count <= self.data_resolution: # self.data_count +=1 # self.Debug('data count < resolution') # return # refill the initial df if len(self.symbols[0].prices) < self.num_bar: # self.Debug('df not full') for i in self.symbols: if data.ContainsKey(i) is True: i.prices.append(float(data[i].Close)) i.dates.append(data[i].EndTime) else: self.Debug('%s is missing'%str(i)) self.symbols.remove(i) self.data_count = 0 return # else: # self.Debug('df full') # generate pairs if self.count == 0 and len(self.symbols[0].prices) == self.num_bar: if self.generate_count == 0: for i in self.symbols: i.df = pd.DataFrame(i.prices, index = i.dates, columns = ['%s'%str(i)]) self.generate_pairs() self.generate_count +=1 # self.Debug('pair list length:'+str(len(self.pair_list))) # correlation selection for i in self.pair_list: i.cor_update() # self.Debug(i.cor) # update the dataframe and correlation selection # self.Debug(str(len(self.pair_list[0]))) if len(self.pair_list) != 0: for i in self.pair_list: i.df_update() i.cor_update() else: generate_count = 0 return self.selected_pair = [x for x in self.pair_list if x.cor <= self.pair_threshold] # self.selected_pair = self.pair_list # cointegration selection for i in self.selected_pair: i.cointegration_test() self.selected_pair = [x for x in self.selected_pair if x.adf <= self.BIC] # self.selected_pair.sort(key = lambda x: x.adf) if len(self.selected_pair) == 0: self.Debug('no selected pair') self.count += 1 return # self.selected_pair = self.pair_clean(self.selected_pair) for i in self.selected_pair: i.touch = 0 # self.Debug(str(i.adf) + i.name) if len(self.selected_pair) > self.selected_num: self.selected_pair = self.selected_pair[:self.selected_num] self.count +=1 self.data_count = 0 return #update the pairs # self.Debug('updating pairs') if self.count != 0 and self.count < self.one_month: num_select = len(self.selected_pair) for i in self.pair_list: if data.ContainsKey(i.a) is True and data.ContainsKey(i.b) is True: i.price_record(data[i.a],data[i.b]) else: self.Debug('%s has no data'%str(i.name)) self.pair_list.remove(i) ## selected pairs for i in self.selected_pair: i.last_error = i.error # self.Debug(i.last_error) for i in self.trading_pairs: i.last_error = i.error ## enter # self.Debug('ready to trade') for i in self.selected_pair: price_a = float(data[i.a].Close) price_b = float(data[i.b].Close) i.error = price_a - (i.model.params[0] + i.model.params[1]*price_b) if (self.Portfolio[i.a].Quantity == 0 and self.Portfolio[i.b].Quantity == 0) and i not in self.trading_pairs: if i.touch == 0: if i.error < i.mean_error - self.open_size*i.sd and i.last_error > i.mean_error - self.open_size*i.sd: i.touch += -1 elif i.error > i.mean_error + self.open_size*i.sd and i.last_error < i.mean_error + self.open_size*i.sd: i.touch += 1 else: pass elif i.touch == -1: if i.error > i.mean_error - self.open_size*i.sd and i.last_error < i.mean_error - self.open_size*i.sd: self.Debug('long %s not long %s'%(str(i.a),str(i.b))) i.record_model = i.model i.record_mean_error = i.mean_error i.record_sd = i.sd self.trading_pairs.append(i) self.SetHoldings(i.a, 2/(len(self.selected_pair))) #self.SetHoldings(i.b, 0.3/(len(self.selected_pair))) i.touch = 0 elif i.touch == 1: if i.error < i.mean_error + self.open_size*i.sd and i.last_error > i.mean_error + self.open_size*i.sd: self.Debug('short %s not short %s'%(str(i.a),str(i.b))) i.record_model = i.model i.record_mean_error = i.mean_error i.record_sd = i.sd self.trading_pairs.append(i) #self.SetHoldings(i.b, -0.3/(len(self.selected_pair))) self.SetHoldings(i.a, -2/(len(self.selected_pair))) i.touch = 0 else: pass else: pass # close for i in self.trading_pairs: if data.ContainsKey(i.a) and data.ContainsKey(i.b): price_a = float(data[i.a].Close) price_b = float(data[i.b].Close) i.error = price_a - (i.record_model.params[0] + i.record_model.params[1]*price_b) if ((i.error < i.record_mean_error + self.close_size * i.record_sd and i.last_error > i.record_mean_error + self.close_size*i.record_sd) or (i.error > i.record_mean_error - self.close_size * i.record_sd and i.last_error < i.record_mean_error - self.close_size*i.record_sd)): self.Debug('close %s'%str(i.name)) self.Liquidate(i.a) self.Liquidate(i.b) self.trading_pairs.remove(i) elif i.error < i.record_mean_error - (self.stop_loss*i.record_sd) or i.error > i.record_mean_error + self.stop_loss*i.record_sd: self.Debug('close %s to stop loss'%str(i.name)) self.Liquidate(i.a) self.Liquidate(i.b) self.trading_pairs.remove(i) else: pass self.count +=1 self.data_count = 0 return if self.count == self.one_month: self.count = 0 self.data_count = 0 return
import numpy as np import pandas as pd import datetime as datetime import statsmodels.formula.api as sm import statsmodels.tsa.stattools as ts from QuantConnect import * from QuantConnect.Algorithm import * class pairs(object): def __init__(self,a,b): self.a = a self.b = b self.name = str(a) + ':' + str(b) self.df = pd.concat([a.df,b.df],axis = 1).dropna() self.num_bar = self.df.shape[0] self.cor = self.df.corr().ix[0][1] self.error = 0 self.last_error = 0 self.a_price = [] self.a_date = [] self.b_price = [] self.b_date = [] def cor_update(self): self.cor = self.df.corr().ix[0][1] def cointegration_test(self): self.model = sm.ols(formula = '%s ~ %s'%(str(self.a),str(self.b)), data = self.df).fit() self.adf = ts.adfuller(self.model.resid,autolag = 'BIC')[0] self.mean_error = np.mean(self.model.resid) self.sd = np.std(self.model.resid) def price_record(self,data_a,data_b): self.a_price.append(float(data_a.Close)) self.a_date.append(data_a.EndTime) self.b_price.append(float(data_b.Close)) self.b_date.append(data_b.EndTime) def df_update(self): new_df = pd.DataFrame({str(self.a):self.a_price,str(self.b):self.b_price},index = [self.a_date]).dropna() self.df = pd.concat([self.df,new_df]) self.df = self.df.tail(self.num_bar) for i in [self.a_price,self.a_date,self.b_price,self.b_date]: i = []