Overall Statistics
Total Trades
0
Average Win
0%
Average Loss
0%
Compounding Annual Return
0%
Drawdown
0%
Expectancy
0
Net Profit
0%
Sharpe Ratio
0
Probabilistic Sharpe Ratio
0%
Loss Rate
0%
Win Rate
0%
Profit-Loss Ratio
0
Alpha
0
Beta
0
Annual Standard Deviation
0
Annual Variance
0
Information Ratio
-0.258
Tracking Error
0.43
Treynor Ratio
0
Total Fees
$0.00
class MovingAverageAlphaModel(AlphaModel):
    def __init__(self,
                 lookback = 200,
                 resolution_period = 30):
        self.lookback = lookback
        self.resolutionPeriod = resolution_period
        self.insightPeriod = Time.Multiply(Extensions.ToTimeSpan(Resolution.Daily), self.resolutionPeriod)
        self.securities = []
        self.insightsTimeBySymbol = {}

        self.Name = '{}(l:{},rp:{})'.format(self.__class__.__name__, self.lookback, self.resolutionPeriod)
    
    def Update(self, algorithm, data):
        ''' Creates a constant insight for each security as specified via the constructor
        Args:
            algorithm: The algorithm instance
            data: The new data available
        Returns:
            The new insights generated'''
        insights = []

        for security in self.securities:
            # security price could be zero until we get the first data point. e.g. this could happen
            # when adding both forex and equities, we will first get a forex data point
            if security.Price != 0 and self.ShouldEmitInsight(algorithm.UtcTime, security.Symbol):
                # If the current price is above the 'lookback', return an 'Up' insight.
                # If the current price is below the 'lookback', return a 'Down' insight.
                sma = algorithm.SMA(security.Symbol, self.lookback, Resolution.Daily)
                algorithm.Log(security.Symbol.Value + ": " + str(security.Price) + ", " + str(sma.Current.Value))
                if security.Price > sma.Current.Value:
                    insights.append(Insight(security.Symbol, self.insightPeriod, InsightType.Price, \
                    InsightDirection.Up, 0, security.Price, "", sma.Current.Value))
                else:
                    insights.append(Insight(security.Symbol, self.insightPeriod, InsightType.Price, \
                    InsightDirection.Down, 0, security.Price, "", sma.Current.Value))

        return insights
        
            
    def OnSecuritiesChanged(self, algorithm, changes):
        ''' Event fired each time the we add/remove securities from the data feed
        Args:
            algorithm: The algorithm instance that experienced the change in securities
            changes: The security additions and removals from the algorithm'''
        for added in changes.AddedSecurities:
            self.securities.append(added)

        # this will allow the insight to be re-sent when the security re-joins the universe
        for removed in changes.RemovedSecurities:
            if removed in self.securities:
                self.securities.remove(removed)
            if removed.Symbol in self.insightsTimeBySymbol:
                self.insightsTimeBySymbol.pop(removed.Symbol)
            
            
    def ShouldEmitInsight(self, utcTime, symbol):

        generatedTimeUtc = self.insightsTimeBySymbol.get(symbol)

        if generatedTimeUtc is not None:
            # we previously emitted a insight for this symbol, check it's period to see
            # if we should emit another insight
            if utcTime - generatedTimeUtc < self.insightPeriod:
                return False

        # we either haven't emitted a insight for this symbol or the previous
        # insight's period has expired, so emit a new insight now for this symbol
        self.insightsTimeBySymbol[symbol] = utcTime
        return True
from MovingAverageAlphaModel import MovingAverageAlphaModel
from Execution.ImmediateExecutionModel import ImmediateExecutionModel
from Portfolio.EqualWeightingPortfolioConstructionModel import EqualWeightingPortfolioConstructionModel

class QuantumModulatedAntennaArray(QCAlgorithm):

    def Initialize(self):
        self.SetStartDate(2020, 1, 1)
        self.SetCash(100000)
        self.movingAverageLookback = 5
        self.resolutionPeriod = 1
        self.benchmark = Symbol.Create('SPY', SecurityType.Equity, Market.USA)

        self.SetAlpha(MovingAverageAlphaModel(self.movingAverageLookback, self.resolutionPeriod))

        self.SetExecution(ImmediateExecutionModel())

        self.SetPortfolioConstruction(NullPortfolioConstructionModel())

        #symbols = [ Symbol.Create("UPRO", SecurityType.Equity, Market.USA), \
        #            Symbol.Create("TMF", SecurityType.Equity, Market.USA)]
        symbols = [ Symbol.Create("UPRO", SecurityType.Equity, Market.USA)]
        
        self.SetUniverseSelection( ManualUniverseSelectionModel(symbols) )
        
        self.EnableAutomaticIndicatorWarmUp = True


    def OnData(self, data):
        '''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.
            Arguments:
                data: Slice object keyed by symbol containing the stock data
        '''

        # if not self.Portfolio.Invested:
        #    self.SetHoldings("SPY", 1)