Overall Statistics
Total Orders
28
Average Win
0.00%
Average Loss
0%
Compounding Annual Return
0.010%
Drawdown
0.000%
Expectancy
0
Start Equity
100000000
End Equity
100019591.68
Net Profit
0.020%
Sharpe Ratio
-175.614
Sortino Ratio
-165.635
Probabilistic Sharpe Ratio
24.377%
Loss Rate
0%
Win Rate
100%
Profit-Loss Ratio
0
Alpha
-0.02
Beta
0
Annual Standard Deviation
0
Annual Variance
0
Information Ratio
-0.157
Tracking Error
0.163
Treynor Ratio
-1558.505
Total Fees
$123.50
Estimated Strategy Capacity
$630000000000.00
Lowest Capacity Asset
HE YA6WAUCKK7WH
Portfolio Turnover
0.00%
#region imports
from AlgorithmImports import *
#endregion

class ImprovedCommodityMomentumTrading(QCAlgorithm):
    '''
    Demystifying Time-Series Momentum Strategies: Volatility Estimators, Trading Rules and Pairwise Correlations

    This paper proposed 3 modifications to the basic time-series momentum strategies in order to reduce portfolio turnover and improve portfolio performance. 

        1. Volatility Estimator: Yang and Zhang (2000) range-based estimator, which replaces the traditional estimator (standard deviation of past daily returns)
        2. Trading Rules: Trading positions takes a continuum of values between -1 and +1 to reflect the statistical strength of price trend, which replaces the traditional trading rules (binary +1 or -1 based on the sign of historical mean return)
        3. Pairwise Correlations: Incorporate signed pairwise correlations in the weighing scheme of portfolio construction 

    Reference:
    [1] Baltas, Nick and Kosowski, Robert, "Demystifying Time-Series Momentum Strategies: Volatility Estimators, Trading Rules and Pairwise Correlations", May 8, 2017.
        URL: https://pdfs.semanticscholar.org/a2e9/df201d4b4774fda84a961cc804f2450988c5.pdf
    [2] Yang, Dennis, and Qiang Zhang, "Drift‐Independent Volatility Estimation Based on High, Low, Open, and Close Prices", The Journal of Business, vol. 73, no. 3, 2000, pp. 477–492. 
        URL: www.jstor.org/stable/10.1086/209650.'''
    
    def Initialize(self):
        self.SetStartDate(2021, 6, 1) 
        self.SetEndDate(2023, 6, 1)  
        self.SetCash(100000000)

        self.OneYear = 365      # time period for trading rule calculation
        self.OneMonth = 30      # time period for YZ volatility estimator
        self.ThreeMonths = 90   # time period for pairwise correlation calculation

        # Set portfolio target level of volatility, set to 12% 
        self.portfolio_target_sigma = 0.12

        # Last trading date tracker to achieve rebalancing the portfolio every month
        self.RebalancingTime = datetime.min

        tickers = [#Futures.Grains.Soybeans,
                   #Futures.Grains.Wheat,
                   #Futures.Grains.SoybeanMeal,
                   #Futures.Grains.SoybeanOil,
                   Futures.Grains.Corn,
                   #Futures.Grains.Oats,
                   Futures.Meats.LiveCattle,
                   Futures.Meats.FeederCattle,
                   Futures.Meats.LeanHogs,
                   #Futures.Metals.Gold,
                   #Futures.Metals.Silver,
                   #Futures.Metals.Platinum,
                   Futures.Energies.BrentCrude,
                   #Futures.Energies.HeatingOil,
                   #Futures.Energies.NaturalGas,
                   #Futures.Energies.LowSulfurGasoil,
                   #Futures.Softs.Cotton2,
                   #Futures.Softs.OrangeJuice,
                   #Futures.Softs.Coffee,
                   #Futures.Softs.Cocoa
                   ]

        self.symbol_data = {}
        
        for ticker in tickers:
            future = self.AddFuture(ticker,
                resolution = Resolution.Daily,
                extendedMarketHours = True,
                dataNormalizationMode = DataNormalizationMode.BackwardsRatio,
                dataMappingMode = DataMappingMode.OpenInterest,
                contractDepthOffset = 0
            )
            future.SetLeverage(3)

            self.symbol_data[future.Symbol.ID.ToString()] = SymbolData(future)


    def OnData(self, data):
        '''
        Monthly rebalance at the beginning of each month.
        Portfolio weights for each constituents are calculated based on Baltas and Kosowski weights.
        '''
        # Rollover for future contract mapping change
        for symbol_data in self.symbol_data.values():
            if data.SymbolChangedEvents.ContainsKey(symbol_data.Symbol):
                changed_event = data.SymbolChangedEvents[symbol_data.Symbol]
                old_symbol = changed_event.OldSymbol
                new_symbol = changed_event.NewSymbol
                tag = f"Rollover - Symbol changed at {self.Time}: {old_symbol} -> {new_symbol}"
                quantity = self.Portfolio[old_symbol].Quantity

                # Rolling over: to liquidate any position of the old mapped contract and switch to the newly mapped contract
                self.Liquidate(old_symbol, tag = tag)
                self.MarketOrder(new_symbol, quantity // self.Securities[new_symbol].SymbolProperties.ContractMultiplier, tag = tag)

        # skip if less than 30 days passed since the last trading date
        if self.Time < self.RebalancingTime:
            return

        '''Monthly Rebalance Execution'''
        # dataframe that contains the historical data for all securities
        history = self.History([x.Symbol for x in self.symbol_data.values()], self.OneYear, Resolution.Daily)
        history = history.droplevel([0]).replace(0, np.nan)

        # Get the security symbols are are in the history dataframe
        available_symbols = list(set(history.index.get_level_values(level = 0)))
        if len(available_symbols) == 0:
            return

        # Get the trade signals and YZ volatility for all securities
        trade_signals = self.GetTradingSignal(history) 
        volatility = self.GetYZVolatility(history, available_symbols) 
        
        # Get the correlation factor
        CF_rho_bar = self.GetCorrelationFactor(history, trade_signals, available_symbols)

        # Rebalance the portfolio according to Baltas and Kosowski suggested weights
        N_assets = len(available_symbols)
        for symbol, signal, vol in zip(available_symbols, trade_signals, volatility):
            # Baltas and Kosowski weights (Equation 19 in [1])
            weight = (signal*self.portfolio_target_sigma*CF_rho_bar)/(N_assets*vol)
            if str(weight) == 'nan': continue
            
            mapped = self.symbol_data[symbol].Mapped
            qty = self.CalculateOrderQuantity(mapped, np.clip(weight, -1, 1))
            multiplier = self.Securities[mapped].SymbolProperties.ContractMultiplier
            order_qty = (qty - self.Portfolio[mapped].Quantity) // multiplier
            self.MarketOrder(mapped, order_qty)

        # Set next rebalance time
        self.RebalancingTime = Expiry.EndOfMonth(self.Time)


    def GetCorrelationFactor(self, history, trade_signals, available_symbols):
        '''Calculate the Correlation Factor, which is a function of the average pairwise correlation of all portfolio contituents
        - the calculation is based on past three month pairwise correlation
        - Notations:
            rho_bar - average pairwise correlation of all portfolio constituents
            CF_rho_bar - the correlation factor as a function of rho_bar
        '''
        # Get the past three month simple daily returns for all securities
        settle = history.unstack(level = 0)['close']
        settle = settle.groupby([x.date() for x in settle.index]).last()
        past_three_month_returns = settle.pct_change().loc[settle.index[-1]-timedelta(self.ThreeMonths):]

        # Get number of assets 
        N_assets = len(available_symbols)
        
        # Get the pairwise signed correlation matrix for all assets
        correlation_matrix = past_three_month_returns.corr() 

        # Calculate rho_bar
        summation = 0
        for i in range(N_assets-1):
            for temp in range(N_assets - 1 - i):
                j = i + temp + 1
                x_i = trade_signals[i]
                x_j = trade_signals[j]
                rho_i_j = correlation_matrix.iloc[i,j]
                summation += x_i * x_j * rho_i_j
                
        # Equation 14 in [1]
        rho_bar = (2 * summation) / (N_assets * (N_assets - 1)) 

        # Calculate the correlation factor (CF_rho_bar)
        # Equation 18 in [1]
        return np.sqrt(N_assets / (1 + (N_assets - 1) * rho_bar)) 


    def GetTradingSignal(self, history):
        '''TREND Trading Signal
        - Uses the t-statistics of historical daily log-returns to reflect the strength of price movement trend
        - TREND Signal Conditions:
            t-stat > 1 => TREND Signal = 1
            t-stat < 1 => TREND Signal = -1
            -1 < t-stat < 1 => TREND Signal = t-stat
        '''
        settle = history.unstack(level = 0)['close']
        settle = settle.groupby([x.date() for x in settle.index]).last()

        # daily futures log-returns based on close-to-close
        log_returns = np.log(settle/settle.shift(1)).dropna()

        # Calculate the t-statistics as
        # (mean-0)/(stdev/sqrt(n)), where n is sample size
        mean = np.mean(log_returns)
        std = np.std(log_returns)
        n = len(log_returns)
        t_stat = mean/(std/np.sqrt(n))

        # cap holding at 1 and -1
        return np.clip(t_stat, a_max=1, a_min=-1)

    def GetYZVolatility(self, history, available_symbols):
        '''Yang and Zhang 'Drift-Independent Volatility Estimation'
        
        Formula: sigma_YZ^2 = sigma_OJ^2 + self.k * sigma_SD^2 + (1-self.k)*sigma_RS^2 (Equation 20 in [1])
            where,  sigma_OJ - (Overnight Jump Volitility estimator)
                    sigma_SD - (Standard Volitility estimator)
                    sigma_RS - (Rogers and Satchell Range Volatility estimator)
        '''
        YZ_volatility = []

        time_index = history.loc[available_symbols[0]].index

        #Calculate YZ volatility for each security and append to list
        for ticker in available_symbols:
            past_month_ohlc = history.loc[ticker].loc[time_index[-1]-timedelta(self.OneMonth):time_index[-1]].dropna()
            open, high, low, close = past_month_ohlc.open, past_month_ohlc.high, past_month_ohlc.low, past_month_ohlc.close
            estimation_period = past_month_ohlc.shape[0]

            if estimation_period <= 1:
                YZ_volatility.append(np.nan)
                continue

            # Calculate constant parameter k for Yang and Zhang volatility estimator
            # using the formula found in Yang and Zhang (2000)
            k = 0.34 / (1.34 + (estimation_period + 1) / (estimation_period - 1))

            # sigma_OJ (overnight jump => stdev of close-to-open log returns)
            open_to_close_log_returns = np.log(open/close.shift(1))
            open_to_close_log_returns = open_to_close_log_returns[np.isfinite(open_to_close_log_returns)] 
            sigma_OJ = np.std(open_to_close_log_returns) 

            # sigma_SD (standard deviation of close-to-close log returns)
            close_to_close_log_returns = np.log(close/close.shift(1))
            close_to_close_log_returns = close_to_close_log_returns[np.isfinite(close_to_close_log_returns)]
            sigma_SD = np.std(close_to_close_log_returns) 

            # sigma_RS (Rogers and Satchell (1991))
            h = np.log(high/open)
            l = np.log(low/open)
            c = np.log(close/open)
            sigma_RS_daily = (h * (h - c) + l * (l - c))**0.5
            sigma_RS_daily = sigma_RS_daily[np.isfinite(sigma_RS_daily)] 
            sigma_RS = np.mean(sigma_RS_daily) 
            
            # daily Yang and Zhang volatility
            sigma_YZ = np.sqrt(sigma_OJ**2 + k * sigma_SD**2 + (1 - k) * sigma_RS**2) 

            # append annualized volatility to the list
            YZ_volatility.append(sigma_YZ*np.sqrt(252)) 

        return YZ_volatility


class SymbolData:
    def __init__(self, future):
        self._future = future
        self.ID = future.Symbol.ID.ToString()
        self.Symbol = future.Symbol
        self.Weight = 0

    @property
    def Mapped(self):
        return self._future.Mapped