Overall Statistics |
Total Trades 12 Average Win 0.01% Average Loss -0.01% Compounding Annual Return -1.287% Drawdown 0.700% Expectancy 0.175 Net Profit -0.259% Sharpe Ratio -0.965 Probabilistic Sharpe Ratio 14.522% Loss Rate 50% Win Rate 50% Profit-Loss Ratio 1.35 Alpha 0 Beta 0 Annual Standard Deviation 0.009 Annual Variance 0 Information Ratio -0.965 Tracking Error 0.009 Treynor Ratio 0 Total Fees $12.00 Estimated Strategy Capacity $4000000000.00 Lowest Capacity Asset MU R735QTJ8XC9X |
import numpy as np from datetime import datetime import pandas as pd class AppendingInvestedToCoasre(QCAlgorithm): def Initialize(self): self.SetStartDate(2018, 6, 20) self.SetEndDate(2018, 9, 1) self.coarse_amount = 5 self.SetCash(25000) self.AddUniverse(self.CoarseSelectionFunction) self.UniverseSettings.Resolution = Resolution.Daily self.SetBrokerageModel(BrokerageName.InteractiveBrokersBrokerage, AccountType.Margin) self.Data= {} self.stocks = [] def CoarseSelectionFunction(self, coarse): sortedByDollarVolume = sorted(coarse, key=lambda c: c.DollarVolume, reverse=True)[:20] coarse_stocks = [x.Symbol for x in sortedByDollarVolume if x.Price > 15 and x.DollarVolume >= 900000 and x.HasFundamentalData == True][:self.coarse_amount] invested = [ x.Symbol for x in self.Portfolio.Values if x.Invested ] self.stocks = np.unique(invested + coarse_stocks) self.number_of_stocks_returned_from_coarse = len(self.stocks) self.Plot('Symbols', 'coarse_stocks', len(coarse_stocks)) self.Plot('Symbols', 'invested', len(invested)) self.Plot('Symbols', 'stocks', len(self.stocks)) return self.stocks #this list appears to have what I want, but onData does not? def OnSecuritiesChanged(self, changes): for security in changes.AddedSecurities: symbol = security.Symbol if symbol not in self.Data: self.Data[symbol] = SymbolData(self, symbol) for security in changes.RemovedSecurities: symbol = security.Symbol if symbol in self.Data: symbolData = self.Data.pop(symbol, None) self.SubscriptionManager.RemoveConsolidator(symbol, symbolData.consolidator) self.SubscriptionManager.RemoveConsolidator(symbol, symbolData.consolidatorMinute) # =============== ON DATA ============================ # def OnData(self, data): selected = [] symbols_in_onData = [] symbol_values_in_onData = [] for symbol in self.Data.keys(): symbol_values_in_onData.append(symbol.Value) symbols_in_onData.append(symbol) symbolData = self.Data[symbol] b1 = symbolData.Bars[0].Close > symbolData.Bars[1].Close b2 = symbolData.Bars[1].Close > symbolData.Bars[2].Close if b1 and b2: selected.append(symbol) # for sec in self.Portfolio.Keys: #holding percentage lowered to remove this as a factor # if sec not in selected: # self.SetHoldings(sec, 0) invested = [ x.Symbol for x in self.Portfolio.Values if x.Invested ] invested_symbols_in_onData = [ x for x in invested if x in symbols_in_onData] self.Debug("====New Day======") self.Debug(f"We had {len(symbols_in_onData)} symbols looped through onData, we are invested in {len(invested)} securities, {len(invested_symbols_in_onData)} invested symbols were found onData ") self.Debug(f"{self.number_of_stocks_returned_from_coarse} stocks were returned from coasre, {len(symbols_in_onData)} stocks were in onData") #I expect 5 securities from coarse + X number of securities I am invested in, i.e. 5+ 2 invested = 7 symbols looped through for sec in selected: self.SetHoldings(sec, 0.01) #============= SYMBOL DATA CLASS ========================== # class SymbolData: def __init__(self, algorithm, symbol): self.algorithm = algorithm self.symbol = symbol #self.emaOne = algorithm.EMA(symbol, 1, Resolution.Minute) self.ema3 = algorithm.EMA(symbol, 3, Resolution.Daily) self.ema4 = algorithm.EMA(symbol, 4, Resolution.Daily) self.ema50 = algorithm.EMA(symbol, 50, Resolution.Daily) self.ema200 = algorithm.EMA(symbol, 200, Resolution.Daily) self.ema200D = algorithm.EMA(symbol, 200, Resolution.Daily) self.ema200Window = RollingWindow[float](20) self.bb = algorithm.BB(symbol, 20, 2, MovingAverageType.Simple, Resolution.Daily) self.bbWindow = RollingWindow[float](5) self.bb17 = algorithm.BB(symbol, 20, 1.5, MovingAverageType.Simple, Resolution.Daily) self.bb17Window = RollingWindow[float](5) self.bb17LowerBandWindow = RollingWindow[float](5) self.momp = algorithm.MOMP(symbol, 30, Resolution.Daily) self.mompWindow = RollingWindow[float](200) self.rsi = algorithm.RSI(symbol, 14 , Resolution.Daily) self.rsiWindow = RollingWindow[float](20) self.macd = {} #do I need? self.macd = algorithm.MACD(symbol, 12, 26, 9, MovingAverageType.Exponential, Resolution.Daily) self.macdWindow = RollingWindow[float](5) self.macdHistogramWindow = RollingWindow[float](5) #====== V-MACD ============= self.vwap12 = algorithm.VWAP(symbol, 12, Resolution.Daily) #12 period VWAP self.vwap26 = algorithm.VWAP(symbol, 26, Resolution.Daily) #26 perios VWAP self.vmacd = IndicatorExtensions.Minus(self.vwap12, self.vwap26) #vwap26 - vwap12 self.vmacdSignal = IndicatorExtensions.EMA(self.vmacd, 9) self.vmacdHistogram = IndicatorExtensions.Minus(self.vmacd, self.vmacdSignal) #swap self.vmacdHistogramWindow = RollingWindow[float](5) self.close_window = RollingWindow[float](22) self.Bars = RollingWindow[IBaseDataBar](22) # Rolling window for data bars self.consolidator = TradeBarConsolidator(timedelta(days=1)) self.consolidator.DataConsolidated += self.OnDataConsolidated algorithm.SubscriptionManager.AddConsolidator(symbol, self.consolidator) self.BarsWeek = RollingWindow[IBaseDataBar](22) # Rolling window for data bars self.consolidatorWeek = TradeBarConsolidator(timedelta(days=1)) self.consolidatorWeek.DataConsolidated += self.OnDataConsolidatedWeek algorithm.SubscriptionManager.AddConsolidator(symbol, self.consolidatorWeek) self.BarsMinute = RollingWindow[IBaseDataBar](22) # Rolling window for data bars self.consolidatorMinute = TradeBarConsolidator(timedelta(days=2)) self.consolidatorMinute.DataConsolidated += self.OnDataConsolidatedMinute algorithm.SubscriptionManager.AddConsolidator(symbol, self.consolidatorMinute) #=====History Calls======== history = algorithm.History(self.symbol, 25, Resolution.Daily).loc[self.symbol] for time, row in history.iterrows(): tradebar = TradeBar(time, self.symbol, row.open, row.high, row.low, row.close, row.volume) self.consolidatorMinute.Update(tradebar) history = algorithm.History(self.symbol, 200, Resolution.Daily).loc[self.symbol] for time, row in history.iterrows(): tradebar = TradeBar(time, self.symbol, row.open, row.high, row.low, row.close, row.volume) self.consolidator.Update(tradebar) self.consolidatorWeek.Update(tradebar) self.vwap12.Update(tradebar) self.vwap26.Update(tradebar) # Warm up indicators history = algorithm.History([symbol], 201, Resolution.Daily) for time, row in history.loc[symbol].iterrows(): #self.emaOne.Update(time, row["close"]) self.ema200.Update(time, row["close"]) self.momp.Update(time, row["close"]) self.ema3.Update(time, row["close"]) self.ema4.Update(time, row["close"]) self.bb.Update(time, row["close"]) self.bb17.Update(time, row["close"]) self.rsi.Update(time, row["close"]) self.macd.Update(time, row["close"]) self.close_window.Add(row["close"]) #Per anwser it needs the close only #Warm the Rolling Windows if self.ema200.IsReady: self.ema200Window.Add(self.ema200.Current.Value) if self.rsi.IsReady: self.rsiWindow.Add(self.rsi.Current.Value) if self.bb.IsReady: self.bbWindow.Add(self.bb.Current.Value) if self.bb17.IsReady: self.bb17Window.Add(self.bb17.Current.Value) self.bb17LowerBandWindow.Add(self.bb17.LowerBand.Current.Value) if self.macd.IsReady: self.macdWindow.Add(self.macd.Current.Value) self.macdHistogramWindow.Add(self.macd.Histogram.Current.Value) self.vmacdHistogramWindow.Add(self.vmacdHistogram.Current.Value) if self.momp.IsReady: self.mompWindow.Add(self.momp.Current.Value) history = algorithm.History([symbol], 200, Resolution.Daily) for time, row in history.loc[symbol].iterrows(): self.ema200D.Update(time, row["close"]) # Consolidators def OnDataConsolidated(self, sender, bar): self.Bars.Add(bar) def OnDataConsolidatedMinute(self, sender, bar): self.BarsMinute.Add(bar) def OnDataConsolidatedWeek(self, sender, bar): self.BarsWeek.Add(bar) @property def IsReady(self): return self.Bars.IsReady and self.BarsWeek.IsReady and self.rsi.IsReady and self.ema200.IsReady and self.macd.IsReady #and self.macdWindow.IsReady