Overall Statistics |
Total Orders 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Start Equity 100000 End Equity 100000 Net Profit 0% Sharpe Ratio 0 Sortino Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0 Tracking Error 0 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset Portfolio Turnover 0% |
# region imports from AlgorithmImports import * from QuantConnect.DataSource import * # endregion class FuturesPractice4(QCAlgorithm): def Initialize(self): self.SetStartDate(2021, 1, 1) self.SetEndDate(2024, 1, 1) self.SetCash(100000) self.SetBrokerageModel(BrokerageName.InteractiveBrokersBrokerage, AccountType.Margin) self.esContinuous = self.AddFuture(Futures.Indices.SP_500_E_MINI, Resolution.DAILY, dataMappingMode=DataMappingMode.OpenInterest, dataNormalizationMode = DataNormalizationMode.Raw, extendedMarketHours=True, fillForward=True) self.esContinuous.SetFilter(0, 3*182) self._atr = AverageTrueRange(20, MovingAverageType.Simple) def OnData(self, slice: Slice) -> None: for changedEvent in slice.SymbolChangedEvents.Values: if changedEvent.Symbol == self.esContinuous.Symbol: self.Log(f"SymbolChanged event: {changedEvent}") if self.esContinuous.Symbol in slice.Keys: bar = slice[self.esContinuous.Symbol] if bar: self._atr.update(bar) if self._atr.is_ready: self.plot("AverageTrueRange", "atr", self._atr.current.value) self.plot("AverageTrueRange", "true_range", self._atr.true_range.current.value)