Overall Statistics |
Total Trades 25 Average Win 17.16% Average Loss -4.30% Compounding Annual Return 9.012% Drawdown 31.500% Expectancy 0.663 Net Profit 32.269% Sharpe Ratio 0.47 Probabilistic Sharpe Ratio 11.778% Loss Rate 67% Win Rate 33% Profit-Loss Ratio 3.99 Alpha 0.066 Beta 0.116 Annual Standard Deviation 0.16 Annual Variance 0.025 Information Ratio -0.015 Tracking Error 0.239 Treynor Ratio 0.646 Total Fees $25.00 Estimated Strategy Capacity $540000000.00 Lowest Capacity Asset SPY R735QTJ8XC9X Portfolio Turnover 2.09% |
#region imports from AlgorithmImports import * #endregion class CPIData(PythonData): # 12-month unadjusted CPI data # Source: https://www.bls.gov/charts/consumer-price-index/consumer-price-index-by-category-line-chart.htm # Release dates source: https://www.bls.gov/bls/news-release/cpi.htm def GetSource(self, config: SubscriptionDataConfig, date: datetime, isLive: bool) -> SubscriptionDataSource: return SubscriptionDataSource("https://www.dropbox.com/s/f02a9htg6pyhf9p/CPI%20data%201.csv?dl=1", SubscriptionTransportMedium.RemoteFile) def Reader(self, config: SubscriptionDataConfig, line: str, date: datetime, isLive: bool) -> BaseData: if not (line.strip()): return None cpi = CPIData() cpi.Symbol = config.Symbol try: def parse(pct): return float(pct[:-1]) / 100 data = line.split(',') cpi.EndTime = datetime.strptime(data[0], "%m%d%Y %H:%M %p") cpi["month"] = data[1] cpi['all-items'] = parse(data[2]) cpi['food'] = parse(data[3]) cpi['food-at-home'] = parse(data[4]) cpi['food-away-from-home'] = parse(data[5]) cpi['energy'] = parse(data[6]) cpi['gasoline'] = parse(data[7]) cpi['electricity'] = parse(data[8]) cpi['natural-gas'] = parse(data[9]) cpi['all-items-less-food-and-energy'] = parse(data[10]) cpi['commodities-less-food-and-energy-commodities'] = parse(data[11]) cpi['apparel'] = parse(data[12]) cpi['new-vehicles'] = parse(data[13]) cpi['medical-car-commodities'] = parse(data[14]) cpi['services-less-energy-services'] = parse(data[15]) cpi['shelter'] = parse(data[16]) cpi['medical-care-services'] = parse(data[17]) cpi['education-and-communication'] = parse(data[18]) cpi.Value = cpi['all-items-less-food-and-energy'] except ValueError: # Do nothing return None return cpi
#region imports from AlgorithmImports import * #endregion import numpy as np from datetime import datetime import matplotlib.pyplot as plt from AlgorithmImports import * from CPI import CPIData # ------------------------------------------------------------------------- STK = ['QQQ']; BND = ['TLT']; VOLA = 126; BASE_RET = 85; DAY = 85 ;LEV = 1.00 #855 LEV = 1.00 #85 LEV = 1.00; #85 PAIRS = ['SLV', 'GLD', 'XLI', 'XLU', 'DBB', 'UUP'] ; res = Resolution.Daily # ------------------------------------------------------------------------- class DualMomentumInOut(QCAlgorithm): def Initialize(self): self.SetStartDate(2020,1,1) # self.SetEndDate(2010,1,1) self.cap = 10000 #Settare il Capitale Iniziale self.SetCash(self.cap) self.AddEquity('SPY', res).Symbol self.SetBenchmark('SPY') self.STK = self.AddEquity('SPY', res).Symbol self.BND = self.AddEquity('TLT', res).Symbol self.ASSETS = [self.STK, self.BND] self.SLV = self.AddEquity('SLV', res).Symbol self.GLD = self.AddEquity('GLD', res).Symbol self.XLI = self.AddEquity('XLI', res).Symbol self.XLU = self.AddEquity('XLU', res).Symbol self.DBB = self.AddEquity('DBB', res).Symbol self.UUP = self.AddEquity('UUP', res).Symbol # self.SPY = self.AddEquity('SPY', res).Symbol # self.TLT = self.AddEquity('TLT', res).Symbol self.MKT = self.AddEquity('SPY', res).Symbol self.BNCH = self.AddEquity('SPY', res).Symbol self.pairs = [self.XLI, self.XLU, self.GLD, self.SLV, self.DBB, self.UUP] #self.TVC, self.TIP self.bull = 1 self.count = 0 self.outday = 0 self.wt = {} self.real_wt = {} self.mkt = [] self.SetWarmUp(timedelta(350)) self.cpi = self.AddData(CPIData, "CPI") # Aggiungi un grafico per plottare il CPI chart = Chart("CPI") series = Series("CPI", SeriesType.Line) chart.AddSeries(series) self.AddChart(chart) self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.AfterMarketOpen('SPY', 100), #100), #1000), #1005 0), #100), #1000), #100100), #100), #1000), #1005 0), #100), #1000), #100 self.daily_check) symbols = [self.MKT] + self.pairs for symbol in symbols: self.consolidator = TradeBarConsolidator(timedelta(days=1)) self.consolidator.DataConsolidated += self.consolidation_handler self.SubscriptionManager.AddConsolidator(symbol, self.consolidator) self.history = self.History(symbols, VOLA + 1, Resolution.Daily) if self.history.empty or 'close' not in self.history.columns: return self.history = self.history['close'].unstack(level=0).dropna() def consolidation_handler(self, sender, consolidated): self.history.loc[consolidated.EndTime, consolidated.Symbol] = consolidated.Close self.history = self.history.iloc[-(VOLA + 1):] def daily_check(self): vola =0.7*( self.history[[self.MKT]].pct_change().std() * np.sqrt(252)) wait_days = int(vola * DAY) self.Debug('{}'.format(wait_days)) period = int((1.0 - vola) * BASE_RET) r = self.history.pct_change(period).iloc[-1] exit = (r[self.XLI] < r[self.XLU]) and (r[self.SLV] < r[self.GLD]) and (r[self.DBB] < r[self.UUP]) if exit: self.bull = False self.outday = self.count if self.count >= self.outday + wait_days: self.bull = True self.count += 1 if not self.bull: for sec in self.ASSETS: self.wt[sec] = LEV if sec is self.BND else 0 self.trade() elif self.bull: for sec in self.ASSETS: self.wt[sec] = LEV if sec is self.STK else 0 self.trade() def trade(self): for sec, weight in self.wt.items(): if weight == 0 and self.Portfolio[sec].IsLong: self.Liquidate(sec) cond1 = weight == 0 and self.Portfolio[sec].IsLong cond2 = weight > 0 and not self.Portfolio[sec].Invested if cond1 or cond2: self.SetHoldings(sec, weight) def OnEndOfDay(self): vola = self.history[[self.MKT]].pct_change().std() * np.sqrt(252) period = int((1.0 - vola) * (BASE_RET)) r = self.history.pct_change(period).iloc[-1] rGLD = round(((r[self.GLD] - r[self.SLV]) * 50), 100) rXLU = round(((r[self.XLU] - r[self.XLI]) * 50), 100) rUUP = round(((r[self.UUP] - r[self.DBB]) * 50), 100) # rI = round(((r[self.RINF] - r[self.TLT]) * 50), 100) self.Plot('ROC', 'GOLD/SLV', rGLD) self.Plot('ROC', 'XLU/XLI', rXLU) self.Plot('ROC', 'UUP/DBB', rUUP) # self.Plot('ROC', 'RINF/TLT', rI) vola = self.history[[self.MKT]].pct_change().std() * np.sqrt(252) wait_days = int(vola * DAY) self.Plot('Wait_days', 'Days', wait_days) # mkt_price = self.Securities[self.BNCH].Close #self.mkt.append(mkt_price) #mkt_perf = self.mkt[-1] / self.mkt[0] * self.cap #self.Plot('Strategy Equity', 'SPY', mkt_perf) account_leverage = self.Portfolio.TotalHoldingsValue / self.Portfolio.TotalPortfolioValue self.Plot('Holdings', 'leverage', round(account_leverage, 1)) # Crea una istanza della classe CPIData come simbolo personalizzato def OnData(self, data): if not data.ContainsKey("CPI"): return # Ottieni il valore del CPI dal simbolo personalizzato cpi = data["CPI"].Value # Aggiorna il valore del CPI sul grafico self.Plot("CPI", "CPI", cpi)