Overall Statistics |
Total Trades 18 Average Win 0.43% Average Loss -0.45% Compounding Annual Return -1.950% Drawdown 3.800% Expectancy -0.028 Net Profit -0.167% Sharpe Ratio -0.102 Probabilistic Sharpe Ratio 36.412% Loss Rate 50% Win Rate 50% Profit-Loss Ratio 0.94 Alpha -0.012 Beta 0.626 Annual Standard Deviation 0.106 Annual Variance 0.011 Information Ratio -0.139 Tracking Error 0.091 Treynor Ratio -0.017 Total Fees $33.25 |
class CoarseFineFundamentalComboAlgorithm(QCAlgorithm): def Initialize(self): '''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.''' self.SetStartDate(2020,1,1) #Set Start Date self.SetEndDate(2020,1,31) #Set End Date self.SetCash(50000) #Set Strategy Cash # what resolution should the data *added* to the universe be? self.UniverseSettings.Resolution = Resolution.Minute # this add universe method accepts two parameters: # - coarse selection function: accepts an IEnumerable<CoarseFundamental> and returns an IEnumerable<Symbol> # - fine selection function: accepts an IEnumerable<FineFundamental> and returns an IEnumerable<Symbol> self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction) self.__numberOfSymbols = 5 self.__numberOfSymbolsFine = 2 self._changes = None # sort the data by daily dollar volume and take the top 'NumberOfSymbols' ''' def CoarseSelectionFunction(self, coarse): # sort descending by daily dollar volume sortedByDollarVolume = sorted(coarse, key=lambda x: x.DollarVolume, reverse=True) # return the symbol objects of the top entries from our sorted collection return [ x.Symbol for x in sortedByDollarVolume[:self.__numberOfSymbols] ] ''' def CoarseSelectionFunction(self, coarse): # return [c.Symbol for c in coarse if c.HasFundamentalData and c.Price > 10 and # c.DollarVolume > 10000000] coarse_WO_fundamental = [x for x in coarse if x.HasFundamentalData] sortedByVolume = sorted(coarse_WO_fundamental, key=lambda x: x.DollarVolume, reverse=True) top = sortedByVolume[:20] return [i.Symbol for i in top] # sort the data by P/E ratio and take the top 'NumberOfSymbolsFine' def FineSelectionFunction(self, fine): # sort descending by P/E ratio sortedByPeRatio = sorted(fine, key=lambda x: x.ValuationRatios.PERatio, reverse=True) # take the top entries from our sorted collection return [ x.Symbol for x in sortedByPeRatio[:self.__numberOfSymbolsFine] ] def OnData(self, data): # if we have no changes, do nothing if self._changes is None: return # liquidate removed securities for security in self._changes.RemovedSecurities: if security.Invested: self.Liquidate(security.Symbol) # we want 20% allocation in each security in our universe for security in self._changes.AddedSecurities: self.SetHoldings(security.Symbol, 0.2) self._changes = None # this event fires whenever we have changes to our universe def OnSecuritiesChanged(self, changes): self._changes = changes