Overall Statistics |
Total Trades 83 Average Win 30.34% Average Loss -9.11% Compounding Annual Return 41.573% Drawdown 59.500% Expectancy 1.006 Net Profit 938.278% Sharpe Ratio 0.765 Loss Rate 54% Win Rate 46% Profit-Loss Ratio 3.33 Alpha 0.206 Beta 1.777 Annual Standard Deviation 0.447 Annual Variance 0.2 Information Ratio 0.657 Tracking Error 0.404 Treynor Ratio 0.192 Total Fees $521.06 |
from clr import AddReference # .NET Common Language Runtime (CLR) <- http://pythonnet.github.io/ AddReference("System") AddReference("QuantConnect.Algorithm") # to load an assembly use AddReference AddReference("QuantConnect.Common") from System import * # CLR namespaces to be treatedas Python packages from QuantConnect import * from QuantConnect.Algorithm import * from QuantConnect.Python import PythonQuandl # quandl data not CLOSE from QuantConnect.Python import PythonData # custom data import pandas as pd; import numpy as np from collections import deque # double queue container from my_custom_data import * # QuandlFuture, CboeVix, CboeVxV class VIXStrategyByRatio(QCAlgorithm): def Initialize(self): self.SetStartDate(2011, 1, 15) self.SetEndDate(datetime.now().date() - timedelta(1)) self.SetCash(10000) self.SetBrokerageModel(BrokerageName.InteractiveBrokersBrokerage, AccountType.Margin) self.mx_len = 3 # <--- 1 too reactive, 3 filter 1 spikes, 5 filters 2... self.perc_qnty = 1.0 # 0.3 is already fun enough # add the #2 ETFs (short and long VIX futures) self.XIV = self.AddEquity("XIV", Resolution.Daily).Symbol self.VXX = self.AddEquity("VXX", Resolution.Daily).Symbol # Define symbol and "type" of custom data: used for signal ratio self.AddData(CboeVix, "VIX") self.AddData(CboeVxV, "VXV") # VIX futures from Quandl (rtrn'settle' of # 1st continuous VIX fut) # self.VIX1 = "SCF/CBOE_VX1_ON"; self.AddData(QuandlFuture, self.VIX1, Resolution.Daily) # median of the ratio (#5d to filter 2 spikes) self.med_ratio = deque(maxlen=self.mx_len) self.SetWarmUp(timedelta(self.mx_len)) # no really need for this with median def OnData(self, data): if "VIX" not in data or "VXV" not in data: return ratio_d = data["VIX"].Open / data["VXV"].Open # .Close will have look-ahead bias... self.med_ratio.append(ratio_d) # 5d ratio = np.median(self.med_ratio) XIV_qnty = self.Portfolio[self.XIV].Quantity VXX_qnty = self.Portfolio[self.VXX].Quantity # short vol (buy XIV): backwardation and declining vol if (ratio < 0.95): # and (mom > 0.1): if (VXX_qnty !=0): self.Liquidate(self.VXX) if (XIV_qnty ==0): self.SetHoldings(self.XIV, self.perc_qnty) self.Notify.Email("XXXXX@gmail.com", "IB Algo Execution", "long XIV"); self.Log("short VOL") # long vol (buy VXX): contango and increasing vol elif (ratio > 1.05): # and (mom < 0.1): if (XIV_qnty !=0): self.Liquidate(self.XIV) if (VXX_qnty ==0): self.SetHoldings(self.VXX, self.perc_qnty) self.Notify.Email("XXXX@gmail.com", "IB Algo Execution", "long VXX"); self.Log("long VOL") # flat (no position) else: if (XIV_qnty !=0) or (VXX_qnty !=0): self.Liquidate() self.Notify.Email("xxxxxxxxxx@gmail.com", "IB Algo Execution", "Flat position"); self.Log("Flat")
from QuantConnect.Python import PythonQuandl # quandl data not CLOSE from QuantConnect.Python import PythonData # custom data from QuantConnect.Data import SubscriptionDataSource from datetime import datetime, timedelta import decimal class CboeVix(PythonData): '''CBOE Vix Download Custom Data Class''' def GetSource(self, config, date, isLiveMode): url_vix = "http://www.cboe.com/publish/scheduledtask/mktdata/datahouse/vixcurrent.csv" return SubscriptionDataSource(url_vix, SubscriptionTransportMedium.RemoteFile) def Reader(self, config, line, date, isLiveMode): if not (line.strip() and line[0].isdigit()): return None # New CboeVix object index = CboeVix(); index.Symbol = config.Symbol try: # Example File Format: # Date VIX Open VIX High VIX Low VIX Close # 01/02/2004 17.96 18.68 17.54 18.22 #print line data = line.split(',') date = data[0].split('/') index.Time = datetime(int(date[2]), int(date[0]), int(date[1])) index.Value = decimal.Decimal(data[4]) index["Open"] = float(data[1]) index["High"] = float(data[2]) index["Low"] = float(data[3]) index["Close"] = float(data[4]) except ValueError: # Do nothing return None # except KeyError, e: # print 'I got a KeyError - reason "%s"' % str(e) return index # NB: CboeVxV class == CboeVix class, except for the URL class CboeVxV(PythonData): '''CBOE VXV Download Custom Data Class''' def GetSource(self, config, date, isLiveMode): url_vxv = "http://www.cboe.com/publish/scheduledtask/mktdata/datahouse/vix3mdailyprices.csv" return SubscriptionDataSource(url_vxv, SubscriptionTransportMedium.RemoteFile) def Reader(self, config, line, date, isLiveMode): if not (line.strip() and line[0].isdigit()): return None index = CboeVxV(); index.Symbol = config.Symbol try: # Example File Format: # OPEN HIGH LOW CLOSE # 12/04/2007 24.8 25.01 24.15 24.65 data = line.split(',') date = data[0].split('/') index.Time = datetime(int(date[2]), int(date[0]), int(date[1])) index.Value = decimal.Decimal(data[4]) index["Open"] = float(data[1]) index["High"] = float(data[2]) index["Low"] = float(data[3]) index["Close"] = float(data[4]) except ValueError: # Do nothing return None return index # for using VIX futures settle in calc. ratios like VIX/VIX1 class QuandlFuture(PythonQuandl): '''Custom quandl data type for setting customized value column name. Value column is used for the primary trading calculations and charting.''' def __init__(self): # Define ValueColumnName: cannot be None, Empty or non-existant column name # If ValueColumnName is "Close", do not use PythonQuandl, use Quandl: # self.AddData[QuandlFuture](self.VIX1, Resolution.Daily) self.ValueColumnName = "Settle"