Overall Statistics |
Total Trades 728 Average Win 0.55% Average Loss -0.30% Compounding Annual Return 109.424% Drawdown 16.200% Expectancy 0.058 Net Profit 6.695% Sharpe Ratio 1.92 Probabilistic Sharpe Ratio 53.670% Loss Rate 62% Win Rate 38% Profit-Loss Ratio 1.81 Alpha 1.322 Beta -0.442 Annual Standard Deviation 0.622 Annual Variance 0.387 Information Ratio 1.434 Tracking Error 0.631 Treynor Ratio -2.701 Total Fees $0.00 Estimated Strategy Capacity $650000.00 Lowest Capacity Asset BTCUSD XJ |
# Blackpanther Fractal Indicator (window) import numpy as np class PensiveAsparagusHornet(QCAlgorithm): def Initialize(self): self.SetStartDate(2021, 4, 5) self.SetEndDate(2021, 5, 6) self.SetCash(100000) self.crypto = self.AddCrypto("BTCUSD", Resolution.Hour, Market.GDAX).Symbol self.window = RollingWindow[TradeBar](2) self.signal = 0 def OnData(self, data: Slice): if not self.crypto in data.Bars: return self.window.Add(data.Bars[self.crypto]) if not self.window.IsReady: return H = np.flipud(np.array([self.window[i].High for i in range(2)])) L = np.flipud(np.array([self.window[i].Low for i in range(2)])) upFractal = (L[-1] <= L[-2]) dnFractal = (H[-1] >= H[-2]) if upFractal and not dnFractal: self.signal = 1 elif not upFractal and dnFractal: self.signal = -1 self.Plot("Indicator", "signal", self.signal) self.Plot("Indicator", "zero", 0) self.SetHoldings(self.crypto, self.signal)