Overall Statistics |
Total Trades 233 Average Win 0.04% Average Loss -0.05% Compounding Annual Return -0.731% Drawdown 1.800% Expectancy -0.136 Net Profit -0.749% Sharpe Ratio -0.578 Probabilistic Sharpe Ratio 4.659% Loss Rate 53% Win Rate 47% Profit-Loss Ratio 0.85 Alpha -0.009 Beta 0.016 Annual Standard Deviation 0.013 Annual Variance 0 Information Ratio -1.205 Tracking Error 0.117 Treynor Ratio -0.458 Total Fees $257.65 |
from System import * from QuantConnect import * from QuantConnect.Orders import * from QuantConnect.Algorithm import * from QuantConnect.Algorithm.Framework import * from QuantConnect.Algorithm.Framework.Execution import * from QuantConnect.Algorithm.Framework.Risk import * from QuantConnect.Algorithm.Framework.Selection import * from HistoricalReturnsAlphaModel import HistoricalReturnsAlphaModel from MeanVarianceOptimizationPortfolioConstructionModel import MeanVarianceOptimizationPortfolioConstructionModel import numpy as np import pandas as pd from scipy.optimize import minimize class MeanVarianceOptimizationAlgorithm(QCAlgorithmFramework): '''Mean Variance Optimization Algorithm.''' def Initialize(self): ''' Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.''' # Set requested data resolution self.UniverseSettings.Resolution = Resolution.Minute self.SetStartDate(2017, 4, 1) #Set Start Date self.SetEndDate(2018, 4, 9) #Set End Date self.SetCash(100000) #Set Strategy Cash tickers = ['IWD', 'MTUM', 'IWN', 'IWM', 'EFA', 'EEM', 'IEF', 'SPY', 'LQD', 'TLT', 'DBC', 'GLD', 'VNQ'] symbols = [ Symbol.Create(ticker, SecurityType.Equity, Market.USA) for ticker in tickers ] # set algorithm framework models self.SetUniverseSelection( ManualUniverseSelectionModel(symbols) ) self.SetAlpha( HistoricalReturnsAlphaModel(resolution = Resolution.Daily) ) self.SetPortfolioConstruction( MeanVarianceOptimizationPortfolioConstructionModel(portfolioBias = PortfolioBias.Long) ) self.SetExecution( ImmediateExecutionModel() ) self.SetRiskManagement( NullRiskManagementModel() ) #def OnOrderEvent(self, orderEvent): # if orderEvent.Status == OrderStatus.Filled: # self.Debug(orderEvent.ToString()) def maximum_sharpe_ratio(self, returns): '''Maximum Sharpe Ratio optimization method''' # Objective function fun = lambda weights: -self.sharpe_ratio(returns, weights) # Constraint #1: The weights can be negative, which means investors can short a security. constraints = [{'type': 'eq', 'fun': lambda w: np.sum(w) - 1}] size = returns.columns.size x0 = np.array(size * [1. / size]) bounds = tuple((self.minimum_weight, self.maximum_weight) for x in range(size)) opt = minimize(fun, # Objective function x0, # Initial guess method='SLSQP', # Optimization method: Sequential Least SQuares Programming bounds = bounds, # Bounds for variables constraints = constraints) # Constraints definition weights = pd.Series(opt['x'], index = returns.columns) return opt, weights def sharpe_ratio(self, returns, weights): annual_return = np.dot(np.matrix(returns.mean()), np.matrix(weights).T).item() annual_volatility = np.sqrt(np.dot(weights.T, np.dot(returns.cov(), weights))) return annual_return/annual_volatility
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from clr import AddReference AddReference("QuantConnect.Algorithm.Framework") AddReference("QuantConnect.Indicators") AddReference("QuantConnect.Common") from QuantConnect import * from QuantConnect.Indicators import * from QuantConnect.Algorithm.Framework.Alphas import * from datetime import timedelta class HistoricalReturnsAlphaModel: '''Uses Historical returns to create insights.''' def __init__(self, *args, **kwargs): '''Initializes a new default instance of the HistoricalReturnsAlphaModel class. Args: lookback(int): Historical return lookback period resolution: The resolution of historical data''' self.lookback = kwargs['lookback'] if 'lookback' in kwargs else 1 self.resolution = kwargs['resolution'] if 'resolution' in kwargs else Resolution.Daily self.predictionInterval = Time.Multiply(Extensions.ToTimeSpan(self.resolution), self.lookback) self.symbolDataBySymbol = {} def Update(self, algorithm, data): '''Updates this alpha model with the latest data from the algorithm. This is called each time the algorithm receives data for subscribed securities Args: algorithm: The algorithm instance data: The new data available Returns: The new insights generated''' insights = [] for symbol, symbolData in self.symbolDataBySymbol.items(): if symbolData.CanEmit: direction = InsightDirection.Flat magnitude = symbolData.Return if magnitude > 0: direction = InsightDirection.Up if magnitude < 0: direction = InsightDirection.Down insights.append(Insight.Price(symbol, self.predictionInterval, direction, 0.00001, None)) if algorithm.Time.day == 1: return insights else: return [] def OnSecuritiesChanged(self, algorithm, changes): '''Event fired each time the we add/remove securities from the data feed Args: algorithm: The algorithm instance that experienced the change in securities changes: The security additions and removals from the algorithm''' # clean up data for removed securities for removed in changes.RemovedSecurities: symbolData = self.symbolDataBySymbol.pop(removed.Symbol, None) if symbolData is not None: symbolData.RemoveConsolidators(algorithm) # initialize data for added securities symbols = [ x.Symbol for x in changes.AddedSecurities ] history = algorithm.History(symbols, self.lookback, self.resolution) if history.empty: return tickers = history.index.levels[0] for ticker in tickers: symbol = SymbolCache.GetSymbol(ticker) if symbol not in self.symbolDataBySymbol: symbolData = SymbolData(symbol, self.lookback) self.symbolDataBySymbol[symbol] = symbolData symbolData.RegisterIndicators(algorithm, self.resolution) symbolData.WarmUpIndicators(history.loc[ticker]) class SymbolData: '''Contains data specific to a symbol required by this model''' def __init__(self, symbol, lookback): self.Symbol = symbol self.ROC = RateOfChange('{}.ROC({})'.format(symbol, lookback), lookback) self.Consolidator = None self.previous = 0 def RegisterIndicators(self, algorithm, resolution): self.Consolidator = algorithm.ResolveConsolidator(self.Symbol, resolution) algorithm.RegisterIndicator(self.Symbol, self.ROC, self.Consolidator) def RemoveConsolidators(self, algorithm): if self.Consolidator is not None: algorithm.SubscriptionManager.RemoveConsolidator(self.Symbol, self.Consolidator) def WarmUpIndicators(self, history): for tuple in history.itertuples(): self.ROC.Update(tuple.Index, tuple.close) @property def Return(self): return float(self.ROC.Current.Value) @property def CanEmit(self): if self.previous == self.ROC.Samples: return False self.previous = self.ROC.Samples return self.ROC.IsReady def __str__(self, **kwargs): return '{}: {:.2%}'.format(self.ROC.Name, (1 + self.Return)**252 - 1)
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from clr import AddReference AddReference("System") AddReference("QuantConnect.Algorithm") AddReference("QuantConnect.Algorithm.Framework") AddReference("QuantConnect.Common") AddReference("QuantConnect.Indicators") from System import * from QuantConnect import * from QuantConnect.Indicators import * from QuantConnect.Algorithm import * from QuantConnect.Algorithm.Framework import * from QuantConnect.Algorithm.Framework.Portfolio import * from Portfolio.MinimumVariancePortfolioOptimizer import MinimumVariancePortfolioOptimizer from datetime import timedelta import numpy as np import pandas as pd ### <summary> ### Provides an implementation of Mean-Variance portfolio optimization based on modern portfolio theory. ### The default model uses the MinimumVariancePortfolioOptimizer that accepts a 63-row matrix of 1-day returns. ### </summary> class MeanVarianceOptimizationPortfolioConstructionModel(PortfolioConstructionModel): def __init__(self, rebalancingParam = Resolution.Daily, portfolioBias = PortfolioBias.LongShort, lookback = 1, period = 63, resolution = Resolution.Daily, targetReturn = 0.02, optimizer = None): """Initialize the model Args: rebalancingParam: Rebalancing parameter. If it is a timedelta, date rules or Resolution, it will be converted into a function. If None will be ignored. The function returns the next expected rebalance time for a given algorithm UTC DateTime. The function returns null if unknown, in which case the function will be called again in the next loop. Returning current time will trigger rebalance. portfolioBias: Specifies the bias of the portfolio (Short, Long/Short, Long) lookback(int): Historical return lookback period period(int): The time interval of history price to calculate the weight resolution: The resolution of the history price optimizer(class): Method used to compute the portfolio weights""" self.lookback = lookback self.period = period self.resolution = resolution self.portfolioBias = portfolioBias self.sign = lambda x: -1 if x < 0 else (1 if x > 0 else 0) lower = 0 if portfolioBias == PortfolioBias.Long else -1 upper = 0 if portfolioBias == PortfolioBias.Short else 1 self.optimizer = MinimumVariancePortfolioOptimizer(lower, upper, targetReturn) if optimizer is None else optimizer self.symbolDataBySymbol = {} # If the argument is an instance of Resolution or Timedelta # Redefine rebalancingFunc rebalancingFunc = rebalancingParam if isinstance(rebalancingParam, int): rebalancingParam = Extensions.ToTimeSpan(rebalancingParam) if isinstance(rebalancingParam, timedelta): rebalancingFunc = lambda dt: dt + rebalancingParam if rebalancingFunc: self.SetRebalancingFunc(rebalancingFunc) def ShouldCreateTargetForInsight(self, insight): if len(PortfolioConstructionModel.FilterInvalidInsightMagnitude(self.Algorithm, [insight])) == 0: return False symbolData = self.symbolDataBySymbol.get(insight.Symbol) if insight.Magnitude is None: self.algorithm.SetRunTimeError(ArgumentNullException('MeanVarianceOptimizationPortfolioConstructionModel does not accept \'None\' as Insight.Magnitude. Please checkout the selected Alpha Model specifications.')) return False symbolData.Add(self.Algorithm.Time, insight.Magnitude) return True def DetermineTargetPercent(self, activeInsights): """ Will determine the target percent for each insight Args: Returns: """ targets = {} symbols = [insight.Symbol for insight in activeInsights] # Create a dictionary keyed by the symbols in the insights with an pandas.Series as value to create a data frame returns = { str(symbol) : data.Return for symbol, data in self.symbolDataBySymbol.items() if symbol in symbols } returns = pd.DataFrame(returns) if returns.empty: return targets # The portfolio optimizer finds the optional weights for the given data weights = self.optimizer.Optimize(returns) weights = pd.Series(weights, index = returns.columns) # Create portfolio targets from the specified insights for insight in activeInsights: weight = weights[str(insight.Symbol)] # don't trust the optimizer if self.portfolioBias != PortfolioBias.LongShort and self.sign(weight) != self.portfolioBias: weight = 0 targets[insight] = weight return targets def OnSecuritiesChanged(self, algorithm, changes): '''Event fired each time the we add/remove securities from the data feed Args: algorithm: The algorithm instance that experienced the change in securities changes: The security additions and removals from the algorithm''' # clean up data for removed securities super().OnSecuritiesChanged(algorithm, changes) for removed in changes.RemovedSecurities: symbolData = self.symbolDataBySymbol.pop(removed.Symbol, None) symbolData.Reset() # initialize data for added securities symbols = [ x.Symbol for x in changes.AddedSecurities ] history = algorithm.History(symbols, self.lookback * self.period, self.resolution) if history.empty: return tickers = history.index.levels[0] for ticker in tickers: symbol = SymbolCache.GetSymbol(ticker) if symbol not in self.symbolDataBySymbol: symbolData = self.MeanVarianceSymbolData(symbol, self.lookback, self.period) symbolData.WarmUpIndicators(history.loc[ticker]) self.symbolDataBySymbol[symbol] = symbolData class MeanVarianceSymbolData: '''Contains data specific to a symbol required by this model''' def __init__(self, symbol, lookback, period): self.symbol = symbol self.roc = RateOfChange(f'{symbol}.ROC({lookback})', lookback) self.roc.Updated += self.OnRateOfChangeUpdated self.window = RollingWindow[IndicatorDataPoint](period) def Reset(self): self.roc.Updated -= self.OnRateOfChangeUpdated self.roc.Reset() self.window.Reset() def WarmUpIndicators(self, history): for tuple in history.itertuples(): self.roc.Update(tuple.Index, tuple.close) def OnRateOfChangeUpdated(self, roc, value): if roc.IsReady: self.window.Add(value) def Add(self, time, value): item = IndicatorDataPoint(self.symbol, time, value) self.window.Add(item) @property def Return(self): return pd.Series( data = [(1 + float(x.Value))**252 - 1 for x in self.window], index = [x.EndTime for x in self.window]) @property def IsReady(self): return self.window.IsReady def __str__(self, **kwargs): return '{}: {:.2%}'.format(self.roc.Name, (1 + self.window[0])**252 - 1)
from clr import AddReference AddReference("System") AddReference("QuantConnect.Common") AddReference("QuantConnect.Algorithm") AddReference("QuantConnect.Algorithm.Framework") from System import * from QuantConnect import * from QuantConnect.Orders import * from QuantConnect.Algorithm import * from QuantConnect.Algorithm.Framework import * from QuantConnect.Algorithm.Framework.Execution import * from QuantConnect.Algorithm.Framework.Portfolio import * class MonthlyExecutionModel(ExecutionModel): def __init__(self): self.targetsCollection = PortfolioTargetCollection() def Execute(self, algorithm, targets): self.targetsCollection.AddRange(targets) for target in self.targetsCollection.OrderByMarginImpact(algorithm): open_quantity = sum([x.Quantity for x in algorithm.Transactions.GetOpenOrders(target.Symbol)]) existing = algorithm.Securities[target.Symbol].Holdings.Quantity + open_quantity quantity = target.Quantity - existing if quantity != 0: if algorithm.Time.day == 1 and algorithm.Time.hour > 9 and algorithm.Time.minute > 30: algorithm.MarketOrder(target.Symbol, quantity) if quantity > 1: algorithm.Log('Order placed: ' + str(target.Symbol) + ' x ' + str(quantity)) self.targetsCollection.ClearFulfilled(algorithm)