Overall Statistics |
Total Trades 209 Average Win 2.96% Average Loss -3.66% Compounding Annual Return 37.913% Drawdown 20.700% Expectancy 0.636 Net Profit 535.444% Sharpe Ratio 1.838 Probabilistic Sharpe Ratio 92.840% Loss Rate 10% Win Rate 90% Profit-Loss Ratio 0.81 Alpha 0.289 Beta 0.743 Annual Standard Deviation 0.225 Annual Variance 0.051 Information Ratio 1.334 Tracking Error 0.184 Treynor Ratio 0.558 Total Fees $24070.15 Estimated Strategy Capacity $4800000.00 Lowest Capacity Asset QQQ RIWIV7K5Z9LX |
from clr import AddReference AddReference("QuantConnect.Algorithm") AddReference("QuantConnect.Indicators") AddReference("QuantConnect.Algorithm.Framework") from QuantConnect.Algorithm import QCAlgorithm from QuantConnect.Data.UniverseSelection import * from QuantConnect.Indicators import * from QuantConnect import Market # Make changes in Configure from Configure import LETFInformation, PairsList # LETF iterables for easy access. from Configure import DiscountSpreadThreshold, PremiumSpreadThreshold, RollingWindowLength, BarSize, TakeProfit, FixDollarSize, TradingFrequency, WonkSpread import numpy as np import pandas as pd from collections import deque """ Strategies: 1) Swing Trading Based on Intraday Spread Information """ class LETFArb(QCAlgorithmFramework): def Initialize(self): self.SetStartDate(2015, 8, 1) # Set Start Date self.SetEndDate(2021, 5, 1) self.SetBrokerageModel(BrokerageName.AlphaStreams) self.SetCash(round( len(PairsList) *1000000)) self.b = 0 #Holds the raw data. Updated with UpdateQuoteBars() nested withing OnData self.ClosingPrices = {} self.Corrs = {} self.SpreadMeans = {} for Pair in PairsList: self.Corrs[Pair] = [] for symbol in LETFInformation.keys(): equity = self.AddEquity(symbol, Resolution.Minute) self.ClosingPrices[symbol] = [] self.SpreadMeans[symbol] = RollingWindow[float](RollingWindowLength*100) self.SetExecution(ImmediateExecutionModel()) self.Settings.FreePortfolioValuePercentage = 0.025 equity = self.AddEquity("SPY", Resolution.Minute) self.SetBenchmark("SPY") equity = self.AddEquity("VIXM", Resolution.Minute) symbols = [] for symbol in LETFInformation.keys(): symbols.append(Symbol.Create(symbol, SecurityType.Equity, Market.USA)) self.SetUniverseSelection(ManualUniverseSelectionModel(symbols)) ### Scheduled Events to handle logic and risk managment is intuitive to me ### # ManageBars - reset daily rolling window, update volatility lookback window. self.Schedule.On( self.DateRules.EveryDay("SPY"), self.TimeRules.Every(timedelta(minutes=TradingFrequency)), self.Trade) self.Schedule.On( self.DateRules.EveryDay("SPY"), self.TimeRules.BeforeMarketClose("SPY",5), self.ResetTradeBars) """ self.Schedule.On( self.DateRules.EveryDay("SPY"), self.TimeRules.BeforeMarketClose("SPY",90), self.Trade) """ def OnData(self, data): tradeBars = data.Bars for Ticker in self.ClosingPrices.keys(): if not tradeBars.ContainsKey(Ticker): return for Ticker in self.ClosingPrices.keys(): prices = self.ClosingPrices[Ticker] self.Debug(type(prices)) price = tradeBars[Ticker].Close prices.append(price) self.ClosingPrices[Ticker] = prices for Pair in PairsList: self.CheckProfits(Pair) def CheckProfits(self,Pair): tickers= [Pair[0], Pair[1], "VIXM"] #if self.Portfolio[BenchmarkTicker].UnrealizedProfitPercent < -.1: #self.MarketOrder("URTY",100) def _check(ticker): earn = self.Portfolio[ticker].UnrealizedProfitPercent if earn >TakeProfit: self.Debug(f"{ticker} Earned {earn} Time: {self.Time}") self.Liquidate(ticker) # #if (bench_earn) > TakeProfit : # self.Liquidate(BenchmarkTicker) # self.Debug(f"Benchmark Earned {bench_earn} Time: {self.Time}") # for ticker in tickers: _check(ticker) def Trade(self): for Pair in PairsList: BullTicker, BearTicker, BenchmarkTicker = Pair[0], Pair[1], LETFInformation[Pair[0]].TrackingBenchmark def Resample(prices, frequency): return prices[0::frequency] BullPrices = Resample(self.ClosingPrices[BullTicker],BarSize) BearPrices = Resample(self.ClosingPrices[BearTicker],BarSize) BenchPrices = Resample(self.ClosingPrices[BenchmarkTicker],BarSize) if len(BullPrices) < 5 or len(BearPrices) < 5 or len(BenchPrices) <5: return bullspreads = self.GetSpread(BullPrices, BenchPrices,LETFInformation[BullTicker].Beta) bearspreads = self.GetSpread(BearPrices, BenchPrices,LETFInformation[BearTicker].Beta) #Signal = (bearspreads + -1 * bullspreads) """ Corr = np.corrcoef(Signal, self.CummulativeReturn(BullPrices)+self.CummulativeReturn(BearPrices))[0][1] old_corrs = self.Corrs[Pair] old_corrs.append(Corr) self.Corrs[Pair] = old_corrs CorZ = (Corr- np.mean(old_corrs))/ np.std(old_corrs) """ """ Spreads arise from excess momentum. LETFs are short term speculative instruments, and should carry information about momementum. What does a relative premium in the 3x Bull ETF say? Market may be overbought right now. What does a relative discount in the 3x Bear ETF say? Same thing. Spreads are legally managed by Authorized Participants. In laymans terms, Spreads arise from price action that market makers don't correct for. We measured that relative Spreads of opposite Beta LETFs should are also stationary and mean reverting to 0. When markets are functioning well, Spreads are low. When they are misbehaving, Spreads are high because speculation is rampant and market makers step out. When specualtors take over the market, Spreads should correlate to benchmark price action. """ #NoCorr = abs(CorZ) <=0.01 #HighCorr = (CorZ) >=2 #PositiveCorr = Corr >= .4 #NegativeCorr = Corr<= -.4 #NormalCorr = (NoCorr== False) & ( PositiveCorr ==False) & (NegativeCorr== False) bench_invested=self.Securities["SPY"].Invested vix_invested = self.Securities["VIXM"].Invested bull_invested= self.Securities[BullTicker].Invested bear_invested= self.Securities[BearTicker].Invested bearspread = bearspreads.iloc[-1] bullspread = bullspreads.iloc[-1] self.SpreadMeans[BullTicker].Add(bullspread) self.SpreadMeans[BearTicker].Add(bearspread) #bear_ts = pd.Series(list(self.SpreadMeans[BearTicker])) #bull_ts = pd.Series(list(self.SpreadMeans[BullTicker])) """ try: BullZ = (bullspread-bull_ts.mean())/(bull_ts.std()) BearZ = (bearspread-bear_ts.mean())/(bear_ts.std()) #BullZ = bullspread #BearZ = bearspread except ZeroDivisionError: continue """ BullZ = bullspread BearZ = bearspread """ if Corr > .9: self.Debug(f"{Corr} betweeen Benchmark and Excess Bearish Momentum at {self.Time}") #self.Liquidate(BearTicker) #self.SetHoldings(BearTicker,.5) if not self.Portfolio[BullTicker].Invested: if not self.Portfolio[BearTicker].Invested: self.MarketOrder(BullTicker, self._dollar_to_shares(BullTicker,FixDollarSize)) else: #self.delta_neutral_entry(new = BullTicker, existing_leg = BearTicker) self.Liquidate(BearTicker) else: if self.Portfolio[BullTicker].UnrealizedProfitPercent < -1*TakeProfit: self.delta_neutral_entry(new = BullTicker, existing_leg = BullTicker) #self.SetHoldings(BenchmarkTicker,1) elif Corr < -.9: self.Debug(f"{Corr} betweeen Benchmark and Excess Bearish Momentum at {self.Time}") self.Liquidate(BenchmarkTicker) if not self.Portfolio[BearTicker].Invested: if not self.Portfolio[BullTicker].Invested: self.MarketOrder(BearTicker, self._dollar_to_shares(BearTicker,FixDollarSize)) else: #self.delta_neutral_entry(new = BearTicker, existing_leg = BullTicker) self.Liquidate(BullTicker) else: if self.Portfolio[BearTicker].UnrealizedProfitPercent < -1*TakeProfit:self.delta_neutral_entry(new = BearTicker, existing_leg = BearTicker) #self.SetHoldings(BearTicker,1,True) elif not self.Portfolio.Invested: self.SetHoldings(BenchmarkTicker,1) """ BettingSize = FixDollarSize * self.Portfolio.TotalPortfolioValue if BearZ <DiscountSpreadThreshold and BullZ < DiscountSpreadThreshold: #self.SetHoldings(BearTicker,-.20) #self.SetHoldings("SPY",.5) #self.SetHoldings(BullTicker,.75) #self.SetHoldings("VIXM", -.5) self.Debug(f"Discounted Vol at {self.Time} ") self._reportspread(BullTicker,bullspread) self._reportspread(BearTicker,bearspread) #self.SetHoldings("VIXM",.5) #self.SetHoldings(BullTicker,1,True) #self.Liquidate("SPY") #self.MarketOrder(BearTicker,1000) #self.MarketOrder(BullTicker,1000) #self.SetHoldings(BullTicker,.5) #self.SetHoldings(BearTicker,.5) #self.Liquidate(BenchmarkTicker) #self.MarketOrder(BullTicker, self._dollar_to_shares(BullTicker,BettingSize)) #self.MarketOrder(BearTicker, self._dollar_to_shares(BearTicker,BettingSize)) self.MarketOrder_FixedDollar(BullTicker, BettingSize) #self.MarketOrder_FixedDollar(BearTicker, BettingSize) self.Liquidate(BenchmarkTicker) #self.SetHoldings(BenchmarkTicker, 1) #if bear_invested: # self.Liquidate(BearTicker) #self.SetHoldings(BearTicker,.5) if BearZ > PremiumSpreadThreshold and BullZ > PremiumSpreadThreshold: #self.SetHoldings(BearTicker,.50) #self.SetHoldings(BearTicker,-.150) #self.SetHoldings(BullTicker,-.20) self.Debug(f"Premium Vol {self.Time} ") self._reportspread(BullTicker,bullspread) self._reportspread(BearTicker,bearspread) #self.SetHoldings(BenchmarkTicker, -1) #self.SetHoldings("VIXM",.5) #self.SetHoldings("VIXM",1,True) #self.Liquidate("SPY") #self.SetHoldings(BullTicker,.5) #self.MarketOrder_FixedDollar(BearTicker, BettingSize) self.Liquidate(BenchmarkTicker) #self.MarketOrder_FixedDollar(BullTicker, BettingSize) #if bull_invested: self.Liquidate(BullTicker) #self.MarketOrder_FixedDollar("VIXM", BettingSize) #self.MarketOrder_FixedDollar(BearTicker, BettingSize) #self.MarketOrder_FixedDollar(BullTicker, BettingSize) #self.SetHoldings(BullTicker,.25) #self.SetHoldings(BenchmarkTicker,-.5) #self.Liquidate(BenchmarkTicker) #self.MarketOrder("VIXM", self._dollar_to_shares("VIXM",FixDollarSize)) #self.MarketOrder(BullTicker, self._dollar_to_shares(BullTicker,BettingSize)) #self.MarketOrder(BearTicker, self._dollar_to_shares(BearTicker,BettingSize)) if BearZ >PremiumSpreadThreshold and BullZ < DiscountSpreadThreshold : #self.MarketOrder(BullTicker, self._dollar_to_shares(BullTicker,FixDollarSize)) #if bear_invested: #self.Liquidate(BearTicker) self.Liquidate(BenchmarkTicker) #self.MarketOrder_FixedDollar(BullTicker, BettingSize) #self.MarketOrder_FixedDollar(BearTicker, BettingSize) self.MarketOrder_FixedDollar(BullTicker, BettingSize) #self.MarketOrder_FixedDollar(BearTicker, BettingSize) #self.SetHoldings(BenchmarkTicker, -3*FixDollarSize/self.Portfolio.TotalPortfolioValue) #if self.Portfolio[BullTicker].Invested: # self.dilute_position(BullTicker) #self.SetHoldings(BenchmarkTicker, 1) #self.SetHoldings("VIXM",.5) #self.MarketOrder_FixedDollar(BullTicker, BettingSize) #if bear_invested: self.Liquidate(BearTicker) self.Debug(f"Bearish Degeneracy at {self.Time} ") self._reportspread(BullTicker,bullspread) self._reportspread(BearTicker,bearspread) #self.MarketOrder(BullTicker, self._dollar_to_shares(BullTicker,BettingSize)) #self._deltaneutral(BullTicker,BearTicker) #self.Liquidate("SPY") #self.Liquidate(BullTicker) #self.MarketOrder(BullTicker, self._dollar_to_shares(BullTicker,BettingSize)) #self.MarketOrder(BearTicker, self._dollar_to_shares(BearTicker,BettingSize)) #self.MarketOrder_FixedDollar(BullTicker, BettingSize) #self.Liquidate(BenchmarkTicker) #self.SetHoldings(BullTicker,-.5) if BearZ < DiscountSpreadThreshold and BullZ > PremiumSpreadThreshold: self.Debug(f"Bull Degeneracy {self.Time} ") #self.SetHoldings(BenchmarkTicker, -1) #self.MarketOrder_FixedDollar(BearTicker, BettingSize) #if bull_invested: self.Liquidate(BullTicker) self._reportspread(BullTicker,bullspread) self._reportspread(BearTicker,bearspread) #self.MarketOrder_FixedDollar(BearTicker, BettingSize) self.Liquidate(BenchmarkTicker) #self.MarketOrder_FixedDollar(BullTicker, BettingSize) self.MarketOrder_FixedDollar(BearTicker, BettingSize) #self.MarketOrder_FixedDollar(BullTicker, BettingSize) #self.MarketOrder(BearTicker, self._dollar_to_shares(BearTicker,BettingSize)) #self.MarketOrder(BearTicker, self._dollar_to_shares(BearTicker,FixDollarSize)) #self.Liquidate("VIXM") #self.Liquidate(BenchmarkTicker) #self.SetHoldings(BullTicker,.25) #self.SetHoldings(BearTicker,1) #self.Liquidate(BenchmarkTicker) #self.Liquidate("SPY") #self.SetHoldings(BearTicker,-.5) #self.SetHoldings(BullTicker,-.5) if abs(bearspread) < WonkSpread/2 and abs(bullspread) < WonkSpread/2: if not self.Portfolio.Invested: self.SetHoldings(BenchmarkTicker,1) self.Debug(f"Safe at {self.Time}") def InvestedAndProfited(self,Ticker): if self.Portfolio[Ticker].UnrealizedProfitPercent > 0.07: self.Debug("Took Profits {} at {}-{}".format(Ticker,self.Portfolio[Ticker].UnrealizedProfitPercent, self.Time)) self.MarketOrder(Ticker, -1* self.Portfolio[Ticker].Quantity) elif self.Portfolio[Ticker].UnrealizedProfitPercent<-.99: self.Debug("In the hole {}- {}".format(Ticker, self.Time)) self.MarketOrder(Ticker, .00001*self.Portfolio[Ticker].Quantity) def CummulativeReturn(self,ts): return (1+pd.Series(ts).pct_change().dropna()).cumprod()-1 def GetSpread(self,letf_ts,benchmark_ts, Beta): cummuative_letf_ts = self.CummulativeReturn(letf_ts) cummulative_bench_ts = self.CummulativeReturn(benchmark_ts) expected_letf_ts = cummulative_bench_ts * Beta spread = cummuative_letf_ts - expected_letf_ts return spread def ResetTradeBars(self): for Ticker in self.ClosingPrices.keys(): self.ClosingPrices[Ticker] = [] if self.Portfolio[Ticker].Invested: #self.SetHoldings(Ticker,0) #self.Debug(f"Liqudated {Ticker}") pass def _reportspread(self, ticker,spread): self.Debug(f"{ticker} has {spread} Spread") def _dollar_to_shares(self,ticker,dollar_size): return round(dollar_size / self.Securities[ticker].Price) def MarketOrder_FixedDollar(self,ticker,dollars): self.MarketOrder(ticker, self._dollar_to_shares(ticker,dollars)) def dilute_position(self,ticker): if self.Portfolio[ticker].UnrealizedProfitPercent < -1* TakeProfit: self.MarketOrder(ticker, self._dollar_to_shares(ticker, FixDollarSize )) def _dollar_to_weight(self, dollars): pv= dollars/self.Portfolio.TotalPortfolioValue def delta_neutral_entry(self, new, existing_leg): new_dollars = self.Portfolio[existing_leg].Quantity * self.Portfolio[existing_leg].Price self.MarketOrder(new, self._dollar_to_shares(new,new_dollars)) if new != existing_leg: self.Debug(f"Delta Hedged {existing_leg} with {new}")
from Information import * from UniverseHelpers import LoadSymbolData #### HERE IS WHERE THE MANUAL UNIVERSE SELECTION TICKES ARE DEFINED FOR ALL INTENTS AND PURPOSES ####################### # Append a defined dictionary to add to to the UniverseSelectionModel later on. # LETFInformation is the NAME OF IMPORTED OBJECT that will be used directly in the algorithm. See comments for LoadSymbolData MajorIndicies = [Russell, NASDAQ, SP500,DowJones] NotTheUS= [Russia,DevelopedMSCI,China,Japan] Commodities = [Miners, JuniorMiners,Gold,BloombergSilverIndex] DowSectorSpecific = [DowMaterials,Biotech,DowFinancials,DowHealth, DowIndustrials,DowOilGas, DowUtilities] SPSector = [SP500SmallCap,SP500MidCap, SP500OilGas,SP500Energy, SP500Tech] Currencies = [YenUSD] Working = [NASDAQ, DowJones, Russell, Russia, YenUSD,DowJones] BACKTESTED_SUBUNIVERSES = [NASDAQ] # See comments in Information.py lines 12-23 for what these objects are. They are imported into main. LETFInformation, PairsList = LoadSymbolData(BACKTESTED_SUBUNIVERSES) BarSize =1 #Minutes - How frequently to look to make orders. TradingFrequency = 15 #NoiseFilter is the abs minumum value of the Spread we must overreach before we consider it an Insight. RollingWindowLength = 5000 # 1 Trading day in Minutes. DiscountSpreadThreshold= -.00300 PremiumSpreadThreshold = .0030 #DiscountSpreadThreshold= -3 #PremiumSpreadThreshold = 3 WonkSpread = .00025 FixDollarSize = .25 TakeProfit= 0.0150 #centage at which to start to liquidate regardless of Spread
import numpy as np from tensorflow.python.data.ops import dataset_ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.util.tf_export import keras_export def timeseries_dataset_from_array( data, targets, sequence_length, sequence_stride=1, sampling_rate=1, batch_size=128, shuffle=False, seed=None, start_index=None, end_index=None): """Creates a dataset of sliding windows over a timeseries provided as array. This function takes in a sequence of data-points gathered at equal intervals, along with time series parameters such as length of the sequences/windows, spacing between two sequence/windows, etc., to produce batches of timeseries inputs and targets. Arguments: data: Numpy array or eager tensor containing consecutive data points (timesteps). Axis 0 is expected to be the time dimension. targets: Targets corresponding to timesteps in `data`. It should have same length as `data`. `targets[i]` should be the target corresponding to the window that starts at index `i` (see example 2 below). Pass None if you don't have target data (in this case the dataset will only yield the input data). sequence_length: Length of the output sequences (in number of timesteps). sequence_stride: Period between successive output sequences. For stride `s`, output samples would start at index `data[i]`, `data[i + s]`, `data[i + 2 * s]`, etc. sampling_rate: Period between successive individual timesteps within sequences. For rate `r`, timesteps `data[i], data[i + r], ... data[i + sequence_length]` are used for create a sample sequence. batch_size: Number of timeseries samples in each batch (except maybe the last one). shuffle: Whether to shuffle output samples, or instead draw them in chronological order. seed: Optional int; random seed for shuffling. start_index: Optional int; data points earlier (exclusive) than `start_index` will not be used in the output sequences. This is useful to reserve part of the data for test or validation. end_index: Optional int; data points later (exclusive) than `end_index` will not be used in the output sequences. This is useful to reserve part of the data for test or validation. Returns: A tf.data.Dataset instance. If `targets` was passed, the dataset yields tuple `(batch_of_sequences, batch_of_targets)`. If not, the dataset yields only `batch_of_sequences`. Example 1: Consider indices `[0, 1, ... 99]`. With `sequence_length=10, sampling_rate=2, sequence_stride=3`, `shuffle=False`, the dataset will yield batches of sequences composed of the following indices: ``` First sequence: [0 2 4 6 8 10 12 14 16 18] Second sequence: [3 5 7 9 11 13 15 17 19 21] Third sequence: [6 8 10 12 14 16 18 20 22 24] ... Last sequence: [78 80 82 84 86 88 90 92 94 96] ``` In this case the last 3 data points are discarded since no full sequence can be generated to include them (the next sequence would have started at index 81, and thus its last step would have gone over 99). Example 2: temporal regression. Consider an array `data` of scalar values, of shape `(steps,)`. To generate a dataset that uses the past 10 timesteps to predict the next timestep, you would use: ```python input_data = data[:-10] targets = data[10:] dataset = tf.keras.preprocessing.timeseries_dataset_from_array( input_data, targets, sequence_length=10) for batch in dataset: inputs, targets = batch assert np.array_equal(inputs[0], data[:10]) # First sequence: steps [0-9] assert np.array_equal(targets[0], data[10]) # Corresponding target: step 10 break ``` """ # Validate the shape of data and targets if targets is not None and len(targets) != len(data): raise ValueError('Expected data and targets to have the same number of ' 'time steps (axis 0) but got ' 'shape(data) = %s; shape(targets) = %s.' % (data.shape, targets.shape)) if start_index and (start_index < 0 or start_index >= len(data)): raise ValueError('start_index must be higher than 0 and lower than the ' 'length of the data. Got: start_index=%s ' 'for data of length %s.' % (start_index, len(data))) if end_index: if start_index and end_index <= start_index: raise ValueError('end_index must be higher than start_index. Got: ' 'start_index=%s, end_index=%s.' % (start_index, end_index)) if end_index >= len(data): raise ValueError('end_index must be lower than the length of the data. ' 'Got: end_index=%s' % (end_index,)) if end_index <= 0: raise ValueError('end_index must be higher than 0. ' 'Got: end_index=%s' % (end_index,)) # Validate strides if sampling_rate <= 0 or sampling_rate >= len(data): raise ValueError( 'sampling_rate must be higher than 0 and lower than ' 'the length of the data. Got: ' 'sampling_rate=%s for data of length %s.' % (sampling_rate, len(data))) if sequence_stride <= 0 or sequence_stride >= len(data): raise ValueError( 'sequence_stride must be higher than 0 and lower than ' 'the length of the data. Got: sequence_stride=%s ' 'for data of length %s.' % (sequence_stride, len(data))) if start_index is None: start_index = 0 if end_index is None: end_index = len(data) # Determine the lowest dtype to store start positions (to lower memory usage). num_seqs = end_index - start_index - (sequence_length * sampling_rate) + 1 if num_seqs < 2147483647: index_dtype = 'int32' else: index_dtype = 'int64' # Generate start positions start_positions = np.arange(0, num_seqs, sequence_stride, dtype=index_dtype) if shuffle: if seed is None: seed = np.random.randint(1e6) rng = np.random.RandomState(seed) rng.shuffle(start_positions) sequence_length = math_ops.cast(sequence_length, dtype=index_dtype) sampling_rate = math_ops.cast(sampling_rate, dtype=index_dtype) positions_ds = dataset_ops.Dataset.from_tensors(start_positions).repeat() # For each initial window position, generates indices of the window elements indices = dataset_ops.Dataset.zip( (dataset_ops.Dataset.range(len(start_positions)), positions_ds)).map( lambda i, positions: math_ops.range( # pylint: disable=g-long-lambda positions[i], positions[i] + sequence_length * sampling_rate, sampling_rate), num_parallel_calls=dataset_ops.AUTOTUNE) dataset = sequences_from_indices(data, indices, start_index, end_index) if targets is not None: indices = dataset_ops.Dataset.zip( (dataset_ops.Dataset.range(len(start_positions)), positions_ds)).map( lambda i, positions: positions[i], num_parallel_calls=dataset_ops.AUTOTUNE) target_ds = sequences_from_indices( targets, indices, start_index, end_index) dataset = dataset_ops.Dataset.zip((dataset, target_ds)) if shuffle: # Shuffle locally at each iteration dataset = dataset.shuffle(buffer_size=batch_size * 8, seed=seed) dataset = dataset.batch(batch_size) return dataset def sequences_from_indices(array, indices_ds, start_index, end_index): dataset = dataset_ops.Dataset.from_tensors(array[start_index : end_index]) dataset = dataset_ops.Dataset.zip((dataset.repeat(), indices_ds)).map( lambda steps, inds: array_ops.gather(steps, inds), # pylint: disable=unnecessary-lambda num_parallel_calls=dataset_ops.AUTOTUNE) return dataset
from clr import AddReference AddReference("QuantConnect.Algorithm") AddReference("QuantConnect.Indicators") AddReference("QuantConnect.Algorithm.Framework") from QuantConnect.Algorithm import QCAlgorithm from QuantConnect.Data.UniverseSelection import * from QuantConnect.Indicators import * from Execution.ImmediateExecutionModel import ImmediateExecutionModel from collections import deque, UserDict import numpy as np ll = 0 ul = 3 class Universe(UserDict): def __delitem__(self, key): pass def __setitem__(self, key, value): pass EmergingMarkets = [ ("EFO","EFU",-1,3,3), #Proshares MSCI EAFE ("UPV","EPV",-1,3,3), #Proshares MSCI Developed EU ("FXP","XPP",-1,3,3), #Proshares MSCI China ("EWV","EZJ",-1,3,3)] #Proshares MSCI Japan] ProsharesSectorETF = [ ("UYM","SMN",-1,3,3), #Proshares Dow Jones U.S. Basic Materials ("UBIO","ZBIO",-1,3,3), #Proshares Nasdaq Biotech 3x ("BIB","BIS",-1,3,3), #Proshares Nasdaq Biotech 2x ("SCOM","UCOM",-1,3,3), #Proshares S&P Communication Services Select Sector 3x ("SKF","UYG",-1,3,3), #Proshares Dow Jones U.S. Financials ("FINU","FINZ",-1,3,3), #Proshares S&P Financial Select Sector ("RXD","RXL",-1,3,3), #Proshares Dow Jones U.S. Health Care ("UXI","SIJ",-1,3,3), #Proshares Dow Jones U.S. Industrials ("DIG","DUG",-1,3,3), #Proshares Dow Jones U.S. Oil & Gas ("SRS","URE",-1,3,3), #Proshares Dow Jones Real Estate ("USD","SSG",-1,3,3), #Proshares Dow Jones U.S. Semiconductors ("ROM","REW",-1,3,3), #Proshares Dow Jones U.S. Technology ("SDP","UPW",-1,3,3)] NotLiquid = [ ("SAA", "SDD"), ("MZZ", "MVV", -1,3,3), ("UMDD", "SMDD", -1,3,3), ("GLL","UGL",-1,3,3),#Proshares Bloomberg Gold Subindex ("AGQ","ZSL",-1,3,3),#Proshares Bloomberg Silver Subindex ("YCS","YCL",-1,3,3), ("DSLV","USLV",-1,3,3), ("UGLD","DGLD",-1,3,3), ("GUSH","DRIP",-1,3,3), #Direxion Oils and Gas Exploration ("RUSL","RUSS",-1,3,3), #Direxion Russia ("GASL","GASX",-1,3,3), #Direxion Natural Gas ("FAZ","FAS",-1,3,3),#Direxion Financials ("ERY","ERX",-1,3,3), #Direxion Energy ("YINN","YANG",-1,3,3) ] + EmergingMarkets + ProsharesSectorETF USTreasury = [ ("TBT","UBT",-1,3,3), #Proshares ICE U.S. Treasury 20+ Year Bond ("PST","UST",-1,3,3), #Proshares ICE U.S. Treasury 7 Year Bond ("TMF","TMV",-1,3,3)] LiquidETFCompetition = [ ("UGAZ","DGAZ",-1,3,3), ("ERY","ERX",-1,3,3), ("NUGT","DUST",-1,3,3), ("UCO","SCO",-1,3,3), ("NUGT","DUST",-1,3,3), ("TECS","TECL",-1,3,3), ("SOXS","SOXL",-1,3,3)] SP500 = [ #Proshares SP Small Cap #Proshares SP Mid Cap 2x #Proshares SP Mid Cap 3x ("SPY", "SH", -1, 3,3), #-1 ("SDS","SSO",-1,3,3),#Proshares SP500 2x ("UPRO","SPXU",-1,3,3), #3x ("SPXL","SPXS",-1,3,3)]# 3x NASDAQ = [ ("TQQQ","SQQQ",-1,2,2), #Proshares Nasdaq 3x ("QQQ","PSQ",-1,2,2 ), #1x ("QLD","QID",-1,2,2)] #2x Russell2000 = [ ("SRTY","URTY",-1,ul,ll), #Proshares Russel 3x ("RWM","IWM",-1,ul,ll), #Proshares Russel 1x ("TWM","UWM",-1,ul,ll)] DirexionETFs = [ ("TECL","TECS",-1,ll,ul),#Direxion Tech 3x ("TNA","TZA",-1,ll,ul), #Direxion Small Cap 3x ("LABU","LABD",-1,ll,ul), #Direxion Biotech ("NUGT","DUST",-1,ll,ul), #Direxion Gold Miners ("JNUG","JDST",-1,ll,ul) #Direxion Junior Gold Miners ] Commoditities = [ ("OILU","OILD",-1,ll,ul), #Proshares Bloomberg WTI Crude Oil Subindex 3x ("UCO","SCO",-1,ll,ul),#Proshares Bloomberg WTI Crude Oil Subindex 2x ("ERY","ERX",-1,ll,ul)] def fetch_symbols(Pairs): symbols = [] for info in Pairs: symbols.append(info[0]) symbols.append(info[1]) return symbols DJIA = Universe() DJIA.Benchmark = "DIA" DJIA.Pairs = [("DIA", 'DOG', -1, ll,ul), #Proshares Dow 1x ("SDOW","UDOW",-1),#Proshares Dow 3x ("DDM","DXD",-1) ] Russel = Universe() Russel.Benchmark = "IWM" Russel.Pairs = [ #("SRTY","URTY",-1,ul,ll), #Proshares Russel 3x ("RWM","IWM",-1,ul,ll), #Proshares Russel 1 #("TWM","UWM",-1,ul,ll) ] TradedUniverse = Russel Bars = 15 PosSize =5000 RiskCap= -.5 Profit = .0003 MinSpread = 0 Z = .68 SlowVol = 30 #Days BarLookBack = SlowVol*(6.5)*(60)/Bars PairLookBack = 5 class LETFArb(QCAlgorithmFramework): def Initialize(self): self.SetStartDate(2015, 4, 1) # Set Start Date self.SetEndDate(2019, 3, 2) BarPeriod = TimeSpan.FromMinutes(Bars) self.SetBrokerageModel(BrokerageName.AlphaStreams) self.BettingSize = float(1/len(fetch_symbols(TradedUniverse.Pairs))) self.Debug(str(self.BettingSize)) self.SetCash(round(PosSize/self.BettingSize)) self.PriceData = {} equity = self.AddEquity("VXX", Resolution.Daily) self.VIX = RateOfChangePercent("VXX",Resolution.Daily) symbol = TradedUniverse.Benchmark equity = self.AddEquity(symbol, Resolution.Daily) for symbol in fetch_symbols(TradedUniverse.Pairs): equity = self.AddEquity(symbol, Resolution.Minute) self.PriceData[symbol] = deque(maxlen=2) self.Data = {} self.LETFSymbols = [] for PairsInfo in TradedUniverse.Pairs: IndexConsolidator = TradeBarConsolidator(BarPeriod) LETFConsolidator= TradeBarConsolidator(BarPeriod) self.LETFSymbols.append(PairsInfo[1]) data = Universe() data.LETFTicker = PairsInfo[1] data.IndexTicker = PairsInfo[0] data.Leverage = PairsInfo[2] data.Spreads= deque(maxlen= int(BarLookBack)) data.Pair = deque([],maxlen=PairLookBack) self.Data[data.LETFTicker] = data IndexConsolidator.DataConsolidated += self.IndexHandler LETFConsolidator.DataConsolidated += self.LETFHandler self.SubscriptionManager.AddConsolidator(self.Data[data.LETFTicker].LETFTicker,LETFConsolidator) self.SubscriptionManager.AddConsolidator(self.Data[data.LETFTicker].IndexTicker,IndexConsolidator) self.SetExecution(ImmediateExecutionModel()) self.SetBenchmark("SPY") self.IndexUpdated = False self.LETFUpdated = False symbols = [] for symbol in fetch_symbols(TradedUniverse.Pairs): symbols.append(Symbol.Create(symbol, SecurityType.Equity, Market.USA)) symbols.append(Symbol.Create("TVIX", SecurityType.Equity, Market.USA)) self.SetUniverseSelection(ManualUniverseSelectionModel(symbols)) def IndexHandler(self,sender, bar): try: Prices = self.PriceData[bar.Symbol.Value] Prices.append(bar.Close) self.PriceData[bar.Symbol.Value] = Prices self.IndexUpdated = True except KeyError: pass def LETFHandler(self,sender, bar): try: Prices = self.PriceData[bar.Symbol.Value] Prices.append(bar.Close) self.PriceData[bar.Symbol.Value] = Prices self.LETFUpdated = True except KeyError: pass def NowStale(self): self.IndexUpdated = False self.LETFUpdated = False def RecordPair(self,Data): Pair = Data.Pair IndexMV = self.Portfolio[Data.IndexTicker].Quantity * self.Portfolio[Data.IndexTicker].Price LETFMV = self.Portfolio[Data.LETFTicker].Quantity * self.Portfolio[Data.LETFTicker].Price Pair.append(IndexMV +LETFMV) Data.Pair = Pair def OnData(self, data): Updated = self.IndexUpdated and self.LETFUpdated if Updated: for key in self.LETFSymbols: Data = self.Data[key] LETFTicker = Data.LETFTicker IndexTicker = Data.IndexTicker LETFPrices = self.PriceData[LETFTicker] IndexPrices = self.PriceData[IndexTicker] if len(LETFPrices) != 2: continue if len(IndexPrices) != 2: continue if LETFPrices[-2] !=0 and IndexPrices[-2] !=0: LETFReturn = (LETFPrices[-1] - LETFPrices[-2])/ LETFPrices[-2] IndexReturn = (IndexPrices[-1] - IndexPrices[-2])/ IndexPrices[-2] Spread = np.log(1+LETFReturn) - np.log(1+ Data.Leverage* IndexReturn) Spreads = Data.Spreads Spreads.append(Spread) Data.Spreads = Spreads else: continue OpenPosition = (self.Securities[Data.LETFTicker].Invested) and (self.Securities[Data.IndexTicker].Invested) if OpenPosition: self.RecordPair(Data) if len(Data.Spreads) >= BarLookBack: Spread = Data.Spreads[-1] SpreadStds = np.std(Data.Spreads) Lowerband = -1*Z * SpreadStds Upperband = Z* SpreadStds Discount = Spread <= MinSpread and Spread < Lowerband Premium = Spread >= abs(MinSpread) and Spread > Upperband if (Discount and not OpenPosition): LETFInsight = Insight.Price(LETFTicker, timedelta(Bars), InsightDirection.Up) LETFInsight.Weight = self.BettingSize IndexInsight = Insight.Price(IndexTicker, timedelta(Bars), InsightDirection.Down) IndexInsight.Weight = self.BettingSize insights = [LETFInsight, IndexInsight] self.EmitInsights(Insight.Group(insights)) self.SetHoldings([PortfolioTarget(LETFTicker, self.BettingSize), PortfolioTarget(IndexTicker, self.BettingSize)]) if (Premium and OpenPosition): self.EmitInsights(Insight.Price(Data.LETFTicker, timedelta(10), InsightDirection.Flat)) self.EmitInsights(Insight.Price(Data.IndexTicker, timedelta(10), InsightDirection.Flat)) self.Liquidate(Data.LETFTicker) self.Liquidate(Data.IndexTicker) Data.Pair = deque([], maxlen=int(PairLookBack)) self.NowStale() else: for key in self.LETFSymbols: Data = self.Data[key] OpenPosition = (self.Securities[Data.LETFTicker].Invested) and (self.Securities[Data.IndexTicker].Invested) if OpenPosition: self.RecordPair(Data) Pair = Data.Pair if len(Pair) == 0: continue TotalReturn = (Pair[-1] - Pair[0])/Pair[0] UnrealizedProfit = (self.Portfolio[Data.LETFTicker].UnrealizedProfitPercent + self.Portfolio[Data.IndexTicker].UnrealizedProfitPercent)/100 if (UnrealizedProfit > Profit) or UnrealizedProfit< -.02: self.Debug("Early Exit: {}".format(UnrealizedProfit)) self.EmitInsights(Insight.Price(Data.LETFTicker, timedelta(10), InsightDirection.Flat)) self.EmitInsights(Insight.Price(Data.IndexTicker, timedelta(10), InsightDirection.Flat)) self.Liquidate(Data.LETFTicker) self.Liquidate(Data.IndexTicker) Data.Pair = deque([], maxlen=int(PairLookBack)) else:continue
''' LETFData holds all relevant fundamentals needed to build its signal ''' class LETFData: def __init__(self,symbol,benchmark,beta, opposite): self.TrackingBenchmark = benchmark self.Beta = beta self.HedgingSymbol = opposite ''' LoadSymbolData() takes in list of SubUniverses ( dictionaries that are manually defined in Information.py and stored as objects ) The function returns two objects: 1) dict SymbolDataDictionary[LETFTicker:LETFData] - maps an LETFTicker to its LETFData. This object will be globally exposed in Main.py and LETFAlphaModel in order to have to quick access to fundamentals information. 2) list PairsList[(BullETF_Beta1:BearETF_-Beta1)] - Lists of tuples holdings the tickers that would constitute a Pairs Trade These objects only have to be created once at runtime, and it simplifies the passing of information within the self. ''' def LoadSymbolData(dict_list): SymbolData = {} #1 PairsList = [] #2 # iterate over each individual SubUniverse's informaton dictionary for info_dict in dict_list: # Then there is more than One Pair and I manaully set the Pairs in a nested dictionary that is retreived with the key "Trade" if "Trade" in info_dict.keys(): #BullETF_Beta:BearETF_-Beta is the format of the what .items() returns for ticker1, ticker2 in info_dict["Trade"].items(): # Append a tupple of the Pair tickers which we will need later in the AlphaModels.Update() method. PairsList.append((ticker1,ticker2)) bench = info_dict["Benchmark"] SymbolData[ticker1] = LETFData( symbol = ticker1, benchmark = info_dict["Benchmark"], # The Beta of an LETF is found within the Bull/Bear ETF subdictionaries. "Trade" is conventional and manually written in Bull:Bear format. beta = info_dict["BullETFs"][ticker1], opposite = ticker2) SymbolData[ticker2] = LETFData( symbol = ticker2, benchmark = info_dict["Benchmark"], beta = info_dict["BearETFs"][ticker2], opposite = ticker1 ) if info_dict["Benchmark"] not in SymbolData.keys(): SymbolData[bench]= LETFData( symbol = bench, benchmark = info_dict["Benchmark"], beta = 1, opposite = None ) else: #only 1 pair bear = list(info_dict["BearETFs"].keys())[0] bull = list(info_dict["BullETFs"].keys())[0] bench = info_dict["Benchmark"] PairsList.append((bull,bear)) SymbolData[bench]= LETFData( symbol = bench, benchmark = info_dict["Benchmark"], beta = 1, opposite = None ) SymbolData[bull]= LETFData( symbol = bull, benchmark = info_dict["Benchmark"], beta = info_dict["BullETFs"][bull], opposite = bear ) SymbolData[bear] = (LETFData( symbol = bear, benchmark = info_dict["Benchmark"], beta = info_dict["BearETFs"][bear], opposite = bull)) return SymbolData, PairsList def GetTickersFromUniverse(subuniverses_list, traded= True): all_tickers = [] for subuniverse in subuniverses_list: #automatically include the benchmark all_tickers.append(subuniverse["Benchmark"]) # the defaultt setting where we are considering only Pairs we are interested in trading. Manually set in Information.py if "Trade" in subuniverse.keys(): for key, val in subuniverse["Trade"].items(): all_tickers.append(key) all_tickers.append(val) elif "Trade" not in subuniverse.keys() : all_tickers = all_tickers + (list(subuniverse['BearETFs'].keys())) all_tickers = all_tickers + (list(subuniverse['BullETFs'].keys())) return all_tickers
NASDAQ = { "Benchmark": "QQQ", "BullETFs": { "TQQQ":3, "QLD":2, "QQQ":1 }, "BearETFs": { "SQQQ":-3, "QID":-2, "PSQ":-1 }, "Trade":{ "TQQQ":"SQQQ", #"QLD":"QID", #"QQQ":"PSQ" } } SP500 = { "Benchmark": "SPY", "BullETFs": { "UPRO":3, "SDS":2, "SPY":1 }, "BearETFs": { "SPXU":-3, "SSO":-2 , "SH":-1 }, "Trade":{ "UPRO":"SPXU", #"SDS":"SSO", #"SPY":"SH" } } Russell = { "Benchmark": "IWM", "BullETFs": { "TNA":3, "URTY":3, "UWM":2, "IWM":1 }, "BearETFs": { "TZA":-3 , "SRTY":-3, "TWM":-2 , "RWM":-1 }, "Trade":{ #"TNA":"TZA", "URTY":"SRTY", #"UWM":"TWM", #"IWM":"RWM" } } DowJones = { "Benchmark": "DIA", "BullETFs": { "UDOW":3, "DDM":2, "DIA":1, }, "BearETFs": { "SDOW":-3, "DXD":-2, "DOG":-1, }, "Trade":{ "UDOW":"SDOW", #"DDM":"DXD", #"DIA":"DOG", } } Russia= { "Benchmark": "RSX", "BullETFs": { "RUSL":3 }, "BearETFs": { "RUSS":-3 } } DevelopedMSCI = { "Benchmark": "EFA", "BullETFs": { "EFO":2 }, "BearETFs": { "EFU":-2 } } China = { "Benchmark": "FXI", "BullETFs": { "YINN":3, "XXP":2 }, "BearETFs": { "YANG":-3, "FXP":-2, "YXI":-1 }, "Trade":{ "YINN":"YANG", #"XXP":"FXP", #"FXI":"YXI" } } Japan= { "Benchmark": "EWJ", "BullETFs": { "EZJ":2 }, "BearETFs": { "EWV":-2 } } Miners = { "Benchmark": "GDX", "BullETFs": { "NUGT":2 }, "BearETFs": { "DUST":-2 } } JuniorMiners = { "Benchmark": "GDXJ", "BullETFs": { "JNUG":2 }, "BearETFs": { "JDST":-2 } } Gold = { "Benchmark": "GLD", "BullETFs": { "UGL":2 }, "BearETFs": { "GLL":-2 } } DowMaterials = { "Benchmark": "IYM", "BullETFs": { "UYM":2 }, "BearETFs": { "SBM":-2 } } Biotech = { "Benchmark": "IBB", "BullETFs": { "BIB":2 }, "BearETFs": { "BIS":-2 } } DowFinancials = { #SEF is the -1x and Bull/Bear defined relative to benchmark "Benchmark": "SEF", "BullETFs": { "SKF":2 # actually -2x the index }, "BearETFs": { "UYG":-2 # actually 2x the index } } DowHealth = { "Benchmark": "IYH", "BullETFs": { "RXL":2 }, "BearETFs": { "RXD":-2 } } DowIndustrials = { "Benchmark": "IYJ", "BullETFs": { "UXI":2 }, "BearETFs": { "SIJ":-2 } } DowOilGas = { "Benchmark": "IYE", "BullETFs": { "DIG":2, "IYE":1 }, "BearETFs": { "DUG":-2, "DDG":-1}, "Trade":{ "DIG":"DUG", "IYE":"DDG" } } DowRealEstate = { "Benchmark": "IYR", "BullETFs": { "URE":2, "IYR":1 }, "BearETFs": { "SRS":-2, "REK":-1}, "Trade":{ "URE":"SRS", "IYR":"REK"} } DowUtilities = { "Benchmark": "IDU", "BullETFs": { "UPW":2 }, "BearETFs": { "SDP":-2 } } SP500SmallCap = { "Benchmark": "IJR", "BullETFs": { "SAA":2, "IJR":1 }, "BearETFs": { "SDD":-2, "SBB":-1 }, "Trade": { "SAA":"SDD", "IJR":"SBB" } } SP500MidCap = { "Benchmark": "IJH", "BullETFs": { "UMDD":3, "MVV":2, "IJH":1 }, "BearETFs": { "SMDD":-3, "MZZ": -2, "SBB":-1, }, "Trade": { "UMDD":"SMDD", "MVV":"MZZ", "IJH":"SBB", } } BloombergSilverIndex = { "Benchmark": "SLV", "BullETFs": { "AGQ":2 }, "BearETFs": { "ZSL":-2 } } YenUSD = { "Benchmark": "FXY", "BullETFs": { "YCS":2 }, "BearETFs": { "YCL":-2 } } SP500OilGas = { "Benchmark": "XOP", "BullETFs": { "GUSH":2 }, "BearETFs": { "DRIP":-2 } } SP500Energy = { "Benchmark": "XLE", "BullETFs": { "ERX":2 }, "BearETFs": { "ERY":-2 } } SP500Tech = { "Benchmark": "XLK", "BullETFs": { "TECL":2 }, "BearETFs": { "TECS":-2 } } USTreasury = { "Benchmark": "TLT", "BullETFs": { "TMF":3, #Direxion "UBT":2 }, "BearETFs": { "TMV": -3 , #Direxion "TBT":-2, "TBF": -1 }, "Trade": { "TMF":"TMV", #"UBT":"TBT", #"TLT": "TBF" } }
pass
import Configure as config from clr import AddReference AddReference("System") AddReference("QuantConnect.Common") AddReference("QuantConnect.Algorithm") AddReference("QuantConnect.Algorithm.Framework") from QuantConnect import * from QuantConnect.Algorithm import * from QuantConnect.Algorithm.Framework import * from QuantConnect.Algorithm.Framework.Portfolio import PortfolioTarget from QuantConnect.Algorithm.Framework.Risk import RiskManagementModel class TakeProfitsPerPair(RiskManagementModel): def __init__(self, minimumReturnPercent = config.TakeProfit): self.TakeProfit = minimumReturnPercent def ManageRisk(self, algorithm, targets): targets = [] for target in targets: Pair = (target.Symbol , config.LETFInformation[target.Symbol].HedgingSymbol) pnl1 = algorthim.Securities[Pair[0]].Holdings.UnrealizedProfitPercent pnl2 = algorthim.Securities[Pair[1]].Holdings.UnrealizedProfitPercent if pnl1 + pnl2 > self.TakeProfit: # liquidate algorith.Debug("took profits") targets.append(PortfolioTarget(Pairs[0], 0)) targets.append(PortfolioTarget(Pairs[1], 0)) else: #keep old target targets.append(target) return targets
import numpy as np import pandas as pd from UniverseHelpers import LoadSymbolData def Resample(prices, frequency): return prices[0::frequency] def CummulativeReturn(discrete_returns): return (np.cumprod((1+discrete_returns)) -1).dropna() def DiscreteReturn(prices, timestep): if timestep == 1: return prices.pct_change().dropna() else:return Resample(prices,timestep).pct_change().dropna() class SpreadData: def __init__(self, RelevantHistory ,BarSize, price_feature, information): self.BarSize = BarSize self.Information = information self.RawResampledCloseData = RelevantHistory.loc[:,price_feature].unstack(level = 0).dropna()[0::BarSize] self.RawResampledVolumeData = RelevantHistory.loc[:,"volume"].unstack(level = 0).dropna()[0::BarSize] self.SpreadData = pd.DataFrame() self.DiscreteReturns = pd.DataFrame() self.DailyIntradayReturns = pd.DataFrame() self.UniqueDays = pd.Series(self.RawResampledCloseData.index.date).unique() DiscreteReturns = [] CummulativeReturns = [] RVs = [] for unique_day in self.UniqueDays: today = self.RawResampledCloseData[self.RawResampledCloseData.index.date == unique_day] DiscreteReturns.append(today.pct_change().dropna()) CummulativeReturns.append((1+today.pct_change().dropna()).cumprod()-1) rv = DiscreteReturns[-1].apply(lambda x: x**2).cumsum() RVs.append(rv) self.DiscreteReturns = pd.concat(DiscreteReturns) self.CummulativeReturns = pd.concat(CummulativeReturns) self.RV = pd.concat(RVs) def Spreads(self,Pair, daily= False): df = pd.DataFrame( columns = [ "BullSpread", "BearSpread", "PairSpread","Benchmark", "DailyMean_BearSpread" , "DailySwing_BearSpread", "DailyMean_BullSpread" , "DailySwing_BullSpread", "DailyMean_PairSpread" , "DailySwing_PairSpread"]) bull_ticker, bear_ticker = Pair benchmark_ticker = self.Information[bull_ticker].TrackingBenchmark df["Benchmark"] = self.CummulativeReturns[benchmark_ticker] df["Bull"] = self.CummulativeReturns[bull_ticker] df["Bear"] = self.CummulativeReturns[bear_ticker] df["BullSpread"] = self.CummulativeReturns[bull_ticker] -self.Information[bull_ticker].Beta * df["Benchmark"] df["ObservedBeta_Bull"] = self.CummulativeReturns[bull_ticker]/df["Benchmark"] df["Observed_Beta_Bear"] = self.CummulativeReturns[bear_ticker]/df["Benchmark"] df["BearSpread"] = self.CummulativeReturns[bear_ticker] -self.Information[bear_ticker].Beta * df["Benchmark"] df["PairSpread"] = self.CummulativeReturns[bull_ticker] + self.CummulativeReturns[bear_ticker] df["RV"] = self.RV[benchmark_ticker] #df["VIX"] = Returns["VIXM"] df["Corr_Bear"] = df["Benchmark"].expanding().corr(df["BearSpread"]) df["Corr_Pair"] = df["Benchmark"].expanding().corr(df["PairSpread"]) df["Corr_Bull"] = df["Benchmark"].expanding().corr(df["BullSpread"]) if daily: for unique_day in self.UniqueDays: df.loc[df.index.date ==unique_day,"DailyMean_BullSpread"] = np.mean(df[df.index.date ==unique_day]["BullSpread"]) df.loc[df.index.date ==unique_day,"DailyMean_BearSpread"] = np.mean(df[df.index.date ==unique_day]["BearSpread"]) df.loc[df.index.date ==unique_day,"DailyMean_PairSpread"] = np.mean(df[df.index.date ==unique_day]["PairSpread"]) df.loc[df.index.date ==unique_day,"DailySwing_BullSpread"] = max(df[df.index.date ==unique_day]["BullSpread"]) - min(df[df.index.date ==unique_day]["BullSpread"]) df.loc[df.index.date ==unique_day,"DailySwing_BearSpread"] = max(df[df.index.date ==unique_day]["BearSpread"]) - min(df[df.index.date ==unique_day]["BearSpread"]) df.loc[df.index.date ==unique_day,"DailySwing_PairSpread"] = max(df[df.index.date ==unique_day]["PairSpread"]) - min(df[df.index.date ==unique_day]["PairSpread"]) return df def OverallBenchmark(self,Pair): benchmark_ticker = self.Information[Pair[0]].TrackingBenchmark return (1+self.RawResampledData[benchmark_ticker].pct_change()).cumprod() #####################################################
# Your New Python File