Overall Statistics |
Total Orders 475 Average Win 1.65% Average Loss -1.47% Compounding Annual Return 0.852% Drawdown 22.700% Expectancy 0.025 Start Equity 100000 End Equity 108862.55 Net Profit 8.863% Sharpe Ratio -0.013 Sortino Ratio -0.015 Probabilistic Sharpe Ratio 0.035% Loss Rate 52% Win Rate 48% Profit-Loss Ratio 1.12 Alpha -0.015 Beta 0.16 Annual Standard Deviation 0.1 Annual Variance 0.01 Information Ratio -0.62 Tracking Error 0.142 Treynor Ratio -0.008 Total Fees $3915.52 Estimated Strategy Capacity $21000000.00 Lowest Capacity Asset XLK RGRPZX100F39 Portfolio Turnover 12.62% |
#region imports from AlgorithmImports import * import numpy as np from scipy import stats from statsmodels.distributions.empirical_distribution import ECDF from scipy.stats import kendalltau, pearsonr, spearmanr from scipy.optimize import minimize from scipy.integrate import quad import sys from collections import deque #endregion class CopulaPairsTradingAlgorithm(QCAlgorithm): def initialize(self): '''Initialize algorithm and add universe''' self.set_start_date(2010, 1, 1) self.set_end_date(2020, 1, 1) self.set_cash(100000) self._numdays = 1000 # length of formation period which determine the copula we use self._lookbackdays = 250 # length of history data in trading period self._cap__c_l = 0.95 # cap confidence level self._floor__c_l = 0.05 # floor confidence level self._weight_v = 0.5 # desired holding weight of asset v in the portfolio, adjusted to avoid insufficient buying power self._coef = 0 # to be calculated: requested ratio of quantity_u / quantity_v self._window = {} # stores historical price used to calculate trading day's stock return self._day = 0 # keep track of current day for daily rebalance self._month = 0 # keep track of current month for monthly recalculation of optimal trading pair self._pair = [] # stores the selected trading pair # Select optimal trading pair into the universe self.universe_settings.resolution = Resolution.DAILY self.add_universe('PairUniverse', self._pair_selection) def on_data(self, slice): '''Main event handler. Implement trading logic.''' self._set_signal(slice) # only executed at first day of each month # Daily rebalance if self.time.day == self._day: return long, short = self._pair[0], self._pair[1] # Update current price to trading pair's historical price series for symbol, security in self.securities.items(): if symbol in self._pair: self._window[symbol].append(security.price) if len(self._window[long]) < 2 or len(self._window[short]) < 2: return # Compute the mispricing indices for u and v by using estimated copula m_i_u_v, m_i_v_u = self._misprice_index() # Placing orders: if long is relatively underpriced, buy the pair if m_i_u_v < self._floor__c_l and m_i_v_u > self._cap__c_l: self.set_holdings(short, -self._weight_v, False, f'Coef: {self._coef}') self.set_holdings(long, self._weight_v * self._coef * self.portfolio[long].price / self.portfolio[short].price) # Placing orders: if short is relatively underpriced, sell the pair elif m_i_u_v > self._cap__c_l and m_i_v_u < self._floor__c_l: self.set_holdings(short, self._weight_v, False, f'Coef: {self._coef}') self.set_holdings(long, -self._weight_v * self._coef * self.portfolio[long].price / self.portfolio[short].price) self._day = self.time.day def _set_signal(self, slice): '''Computes the mispricing indices to generate the trading signals. It's called on first day of each month''' if self.time.month == self._month: return ## Compute the best copula # Pull historical log returns used to determine copula logreturns = self._get_historical_returns(self._pair, self._numdays) x, y = logreturns[str(self._pair[0])], logreturns[str(self._pair[1])] # Convert the two returns series to two uniform values u and v using the empirical distribution functions ecdf_x, ecdf_y = ECDF(x), ECDF(y) u, v = [ecdf_x(a) for a in x], [ecdf_y(a) for a in y] # Compute the Akaike Information Criterion (AIC) for different copulas and choose copula with minimum AIC tau = kendalltau(x, y)[0] # estimate Kendall'rank correlation AIC ={} # generate a dict with key being the copula family, value = [theta, AIC] for i in ['clayton', 'frank', 'gumbel']: param = self._parameter(i, tau) lpdf = [self._lpdf_copula(i, param, x, y) for (x, y) in zip(u, v)] # Replace nan with zero and inf with finite numbers in lpdf list lpdf = np.nan_to_num(lpdf) loglikelihood = sum(lpdf) AIC[i] = [param, -2 * loglikelihood + 2] # Choose the copula with the minimum AIC self.copula = min(AIC.items(), key = lambda x: x[1][1])[0] ## Compute the signals # Generate the log return series of the selected trading pair logreturns = logreturns.tail(self._lookbackdays) x, y = logreturns[str(self._pair[0])], logreturns[str(self._pair[1])] # Estimate Kendall'rank correlation tau = kendalltau(x, y)[0] # Estimate the copula parameter: theta self.theta = self._parameter(self.copula, tau) # Simulate the empirical distribution function for returns of selected trading pair self.ecdf_x, self.ecdf_y = ECDF(x), ECDF(y) # Run linear regression over the two history return series and return the desired trading size ratio self._coef = stats.linregress(x,y).slope self._month = self.time.month def _pair_selection(self, date): '''Selects the pair of stocks with the maximum Kendall tau value. It's called on first day of each month''' if date.month == self._month: return Universe.UNCHANGED symbols = [ Symbol.create(x, SecurityType.EQUITY, Market.USA) for x in [ "QQQ", "XLK", "XME", "EWG", "TNA", "TLT", "FAS", "FAZ", "XLF", "XLU", "EWC", "EWA", "QLD", "QID" ] ] logreturns = self._get_historical_returns(symbols, self._lookbackdays) tau = 0 for i in range(0, len(symbols), 2): x = logreturns[str(symbols[i])] y = logreturns[str(symbols[i+1])] # Estimate Kendall rank correlation for each pair tau_ = kendalltau(x, y)[0] if tau > tau_: continue tau = tau_ self._pair = symbols[i:i+2] return [x.value for x in self._pair] def on_securities_changed(self, changes): '''Warms up the historical price for the newly selected pair. It's called when current security universe changes''' for security in changes.removed_securities: symbol = security.symbol self._window.pop(symbol) if security.invested: self.liquidate(symbol, "Removed from Universe") for security in changes.added_securities: self._window[security.symbol] = deque(maxlen = 2) # Get historical prices history = self.history(list(self._window.keys()), 2, Resolution.DAILY) history = history.close.unstack(level=0) for symbol in self._window: self._window[symbol].append(history[str(symbol)][0]) def _get_historical_returns(self, symbols, period): '''Get historical returns for a given set of symbols and a given period ''' history = self.history(symbols, period, Resolution.DAILY) history = history.close.unstack(level=0) return (np.log(history) - np.log(history.shift(1))).dropna() def _parameter(self, family, tau): ''' Estimate the parameters for three kinds of Archimedean copulas according to association between Archimedean copulas and the Kendall rank correlation measure ''' if family == 'clayton': return 2 * tau / (1 - tau) elif family == 'frank': ''' debye = quad(integrand, sys.float_info.epsilon, theta)[0]/theta is first order Debye function frank_fun is the squared difference Minimize the frank_fun would give the parameter theta for the frank copula ''' integrand = lambda t: t / (np.exp(t) - 1) # generate the integrand frank_fun = lambda theta: ((tau - 1) / 4.0 - (quad(integrand, sys.float_info.epsilon, theta)[0] / theta - 1) / theta) ** 2 return minimize(frank_fun, 4, method='BFGS', tol=1e-5).x elif family == 'gumbel': return 1 / (1 - tau) def _lpdf_copula(self, family, theta, u, v): '''Estimate the log probability density function of three kinds of Archimedean copulas ''' if family == 'clayton': pdf = (theta + 1) * ((u ** (-theta) + v ** (-theta) - 1) ** (-2 - 1 / theta)) * (u ** (-theta - 1) * v ** (-theta - 1)) elif family == 'frank': num = -theta * (np.exp(-theta) - 1) * (np.exp(-theta * (u + v))) denom = ((np.exp(-theta * u) - 1) * (np.exp(-theta * v) - 1) + (np.exp(-theta) - 1)) ** 2 pdf = num / denom elif family == 'gumbel': A = (-np.log(u)) ** theta + (-np.log(v)) ** theta c = np.exp(-A ** (1 / theta)) pdf = c * (u * v) ** (-1) * (A ** (-2 + 2 / theta)) * ((np.log(u) * np.log(v)) ** (theta - 1)) * (1 + (theta - 1) * A ** (-1 / theta)) return np.log(pdf) def _misprice_index(self): '''Calculate mispricing index for every day in the trading period by using estimated copula Mispricing indices are the conditional probability P(U < u | V = v) and P(V < v | U = u)''' return_x = np.log(self._window[self._pair[0]][-1] / self._window[self._pair[0]][-2]) return_y = np.log(self._window[self._pair[1]][-1] / self._window[self._pair[1]][-2]) # Convert the two returns to uniform values u and v using the empirical distribution functions u = self.ecdf_x(return_x) v = self.ecdf_y(return_y) if self.copula == 'clayton': m_i_u_v = v ** (-self.theta - 1) * (u ** (-self.theta) + v ** (-self.theta) - 1) ** (-1 / self.theta - 1) # P(U<u|V=v) m_i_v_u = u ** (-self.theta - 1) * (u ** (-self.theta) + v ** (-self.theta) - 1) ** (-1 / self.theta - 1) # P(V<v|U=u) elif self.copula == 'frank': A = (np.exp(-self.theta * u) - 1) * (np.exp(-self.theta * v) - 1) + (np.exp(-self.theta * v) - 1) B = (np.exp(-self.theta * u) - 1) * (np.exp(-self.theta * v) - 1) + (np.exp(-self.theta * u) - 1) C = (np.exp(-self.theta * u) - 1) * (np.exp(-self.theta * v) - 1) + (np.exp(-self.theta) - 1) m_i_u_v = B / C m_i_v_u = A / C elif self.copula == 'gumbel': A = (-np.log(u)) ** self.theta + (-np.log(v)) ** self.theta c_uv = np.exp(-A ** (1 / self.theta)) # c_uv is gumbel copula function C(u,v) m_i_u_v = c_uv * (A ** ((1 - self.theta) / self.theta)) * (-np.log(v)) ** (self.theta - 1) * (1.0 / v) m_i_v_u = c_uv * (A ** ((1 - self.theta) / self.theta)) * (-np.log(u)) ** (self.theta - 1) * (1.0 / u) return m_i_u_v, m_i_v_u