Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio -0.478 Tracking Error 0.158 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset |
from AlgorithmImports import * class RollingWindowAlgorithm(QCAlgorithm): def Initialize(self): self.SetStartDate(2003, 1, 2) self.SetEndDate(2015, 1, 2) self.SetCash(100000) # Define the period for the KER calculation self.kerPeriod = 20 # Create a dictionary to hold the KER indicators and rolling windows for each symbol self.kerDict = {} self.kerWinDict = {} # Add 20 equities at daily resolution symbols = ["AAPL", "MSFT", "AMZN", "FB", "GOOG", "GOOGL", "JNJ", "JPM", "V", "PG", "MA", "UNH", "HD", "DIS", "BAC", "VZ", "KO", "CSCO", "PFE", "CVX"] for symbol in symbols: self.AddEquity(symbol, Resolution.Daily) self.kerDict[symbol] = self.KER(symbol, self.kerPeriod) self.kerWinDict[symbol] = RollingWindow[float](self.kerPeriod) self.SetWarmup(self.kerPeriod * 2, Resolution.Daily) # Schedule rebalance every month for each symbol for symbol in symbols: self.Schedule.On(self.DateRules.MonthEnd(symbol), self.TimeRules.AfterMarketOpen(symbol), lambda: self.Rebalance(symbol)) def OnData(self, data): for symbol in self.kerDict.keys(): # Wait for the window to be ready for each symbol if not self.kerDict[symbol].IsReady: return # Add current KER value to the rolling window for each symbol self.kerWinDict[symbol].Add(self.kerDict[symbol].Current.Value) def Rebalance(self, symbol): # Wait for the window to be ready for each symbol if not self.kerWinDict[symbol].IsReady: return # Calculate the average KER for the last year for each symbol avgKER = np.mean(list(self.kerWinDict[symbol])) self.Log("Average Kaufman Efficiency Ratio for {} for last {} days: {:.4f}".format(symbol, self.kerPeriod, avgKER)) # Reset the window for each symbol for the next period self.kerWinDict[symbol].Reset() def OnEndOfAlgorithm(self): for symbol in self.kerDict.keys(): # Calculate the final average KER for each symbol avgKER = np.mean(list(self.kerWinDict[symbol])) self.Log("Final average Kaufman Efficiency Ratio for {} for last {} days: {:.4f}".format(symbol, self.kerPeriod, avgKER))