Overall Statistics |
Total Trades 11 Average Win 59.27% Average Loss -4.95% Compounding Annual Return 206.609% Drawdown 37.000% Expectancy 9.385 Net Profit 723.848% Sharpe Ratio 1.852 Loss Rate 20% Win Rate 80% Profit-Loss Ratio 11.98 Alpha 0.878 Beta 0.122 Annual Standard Deviation 0.48 Annual Variance 0.23 Information Ratio 1.641 Tracking Error 0.486 Treynor Ratio 7.258 Total Fees $690.24 |
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import decimal as d ### <summary> ### In this example we look at the canonical 15/30 day moving average cross. This algorithm ### will go long when the 15 crosses above the 30 and will liquidate when the 15 crosses ### back below the 30. ### </summary> ### <meta name="tag" content="indicators" /> ### <meta name="tag" content="indicator classes" /> ### <meta name="tag" content="moving average cross" /> ### <meta name="tag" content="strategy example" /> class ChannelsAlgorithm(QCAlgorithm): def Initialize(self): '''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.''' self.SetStartDate(2016, 01, 01) #Set Start Date self.SetEndDate(2017, 11, 17) #Set End Date self.SetCash(10000) #Set Strategy Cash self.SetBrokerageModel(BrokerageName.GDAX) self.AddCrypto("BTCUSD", Resolution.Hour) # Create Channels self.channel = self.DCH("BTCUSD",20,20,Resolution.Daily) self.previous = None sPlot = Chart('Strategy Equity') sPlot.AddSeries(Series('Breakout Monitor', SeriesType.Line, 2)) #Only for axis title override sPlot.AddSeries(Series('BTCUSD', SeriesType.Line, 2)) sPlot.AddSeries(Series('UpperBand', SeriesType.Line, 2)) sPlot.AddSeries(Series('LowerBand', SeriesType.Line, 2)) self.AddChart(sPlot) def OnData(self, data): '''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.''' # a couple things to notice in this method: # 1. We never need to 'update' our indicators with the data, the engine takes care of this for us # 2. We can use indicators directly in math expressions # 3. We can easily plot many indicators at the same time # wait for our slow ema to fully initialize # if not self.slow.IsReady: # return # only once per day if self.previous is not None and self.previous.date() == self.Time.date(): return self.Plot('Strategy Equity', 'BTCUSD', self.Securities["BTCUSD"].Price); self.Plot('Strategy Equity', 'UpperBand', float(str(self.channel.UpperBand))); self.Plot('Strategy Equity', 'LowerBand', float(str(self.channel.LowerBand))); # define a small tolerance on our checks to avoid bouncing tolerance = 0.00015; holdings = self.Portfolio["BTCUSD"].Quantity # we only want to go long if we're currently short or flat if holdings <= 0: # if the fast is greater than the slow, we'll go long if float(self.Securities["BTCUSD"].Price) > float(str(self.channel.UpperBand)): self.Log("BUY >> {0}".format(self.Securities["BTCUSD"].Price)) self.SetHoldings("BTCUSD", 1.0) # we only want to liquidate if we're currently long # if the fast is less than the slow we'll liquidate our long if holdings > 0 and self.Securities["BTCUSD"].Price < float(str(self.channel.LowerBand)): self.Log("SELL >> {0}".format(self.Securities["BTCUSD"].Price)) self.Liquidate("BTCUSD") self.previous = self.Time