Overall Statistics
Total Trades
0
Average Win
0%
Average Loss
0%
Compounding Annual Return
0%
Drawdown
0%
Expectancy
0
Net Profit
0%
Sharpe Ratio
0
Probabilistic Sharpe Ratio
0%
Loss Rate
0%
Win Rate
0%
Profit-Loss Ratio
0
Alpha
0
Beta
0
Annual Standard Deviation
0
Annual Variance
0
Information Ratio
-12.407
Tracking Error
0.063
Treynor Ratio
0
Total Fees
$0.00
import pandas as pd
from functools import partial
from QuantConnect.Securities.Option import OptionPriceModels

class ParticleCalibratedCoil(QCAlgorithm):

    def Initialize(self):
        
        '''
            Parameters for adjusting
        '''
        self.numberOfLiquidStocks = 2 # Controls the number of stocks in play
        
        
        '''
            Backtesting variables
        '''
        self.SetWarmUp(43800)
        self.SetStartDate(2019, 10, 18)
        self.SetEndDate(2019, 10, 21)
        #self.SetEndDate(2019, 10, 31)
        self.SetCash(1000000)
        
        '''
            Algorithm variables
        '''
        self.UniverseSettings.Resolution = Resolution.Minute
        self.AddUniverse(self.CoarseSelectionFilter)
        #self.SetSecurityInitializer(lambda x: x.SetDataNormalizationMode(DataNormalizationMode.Raw))
        self.UniverseSettings.DataNormalizationMode = DataNormalizationMode.Raw
        
        self.indicators = {}
        
        
    def CoarseSelectionFilter(self, coarse):
        '''
            1. Sorts each element of the coarse object by dollar volume
            2. Returns a list of coarse object, limited to top 100 highest volume
            3. Returns a list of symbols we want to initialise into the algorithm
        '''
        
        self.sortedByDollarVolume = sorted(coarse, key=lambda c: c.DollarVolume, reverse=True)
        self.topHundredMostLiquid = self.sortedByDollarVolume[:self.numberOfLiquidStocks]
            
        return [stock.Symbol for stock in self.topHundredMostLiquid]
        
    def OnSecuritiesChanged (self,changes):

        '''
            For any new securities added into the universe
            If the security is an underlying
            Subscribe to the option chains
            
            For any securities we want removed from the universe
            Remove the underlying and then remove the options
            
            For each new secury added into the universe
            If there is not yet one
            Create a standard deviation indicator
        '''
        for underlying in changes.AddedSecurities:
            if underlying.Symbol.SecurityType != SecurityType.Equity: continue
            option = self.AddOption(underlying.Symbol.Value, Resolution.Minute)
            option.SetFilter(-5, +2, timedelta(30), timedelta(60))
            option.PriceModel = OptionPriceModels.CrankNicolsonFD()
            
            
            if not underlying.Symbol.Value in self.indicators:
                self.indicators[underlying.Symbol.Value] = {"Volatility": self.STD(underlying.Symbol.Value, 30, Resolution.Daily)}
                
                # Warm up STD indicator
                history = self.History([underlying.Symbol], 30, Resolution.Daily).loc[underlying.Symbol]
                for idx, row in history.iterrows():
                    self.indicators[underlying.Symbol.Value]['Volatility'].Update(idx, row['close'])
                
                self.indicators[underlying.Symbol.Value]["AverageHV"] = SimpleMovingAverage(365)
                  
                symbol = underlying.Symbol.Value
                self.indicators[underlying.Symbol.Value]["Volatility"].Updated += partial(self.OnVolatility, symbol=symbol)
    
        for underlying in changes.RemovedSecurities:
            self.RemoveSecurity(underlying.Symbol)
            for symbol in self.Securities.Keys:
                if symbol.SecurityType == SecurityType.Option and symbol.Underlying == underlying.Symbol:
                    self.RemoveSecurity(symbol)
        
        
    def OnData(self, slice):
        
        '''
            For each OptionChain, the key is the underlying symbol object, while the
            value is the option chain.
            For each chain in OptionChains, each chain represents the entire chain of option contracts
            for the underlying security.
        '''

        for chain in slice.OptionChains.Values:
            
            # Filter for the first ATM contract
            if chain.Contracts.Count < 1:
                continue
            atmContract = sorted(chain, key = lambda x: abs(x.UnderlyingLastPrice - x.Strike))[0]
            
            impliedVolatility = atmContract.ImpliedVolatility
            underlyingSymbol = atmContract.UnderlyingSymbol.Value
            if self.indicators[underlyingSymbol]["AverageHV"].IsReady:
                historicalVolatility = self.indicators[underlyingSymbol]["AverageHV"].Current.Value
                #self.Debug(f"underlyingSymbol has a implied volatility of {impliedVolatility}")
                #self.Debug(f"underlyingSymbol has a historical volatility of {historicalVolatility}")
            
            
            
            
    def OnVolatility(self, sender, updated, symbol):
        self.Log(f'Called: {updated.Value}; Ready: {self.indicators[symbol]["Volatility"].IsReady}')
        if self.indicators[symbol]["Volatility"].IsReady:
            self.indicators[symbol]["AverageHV"].Update(self.Time, updated.Value)