Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio -6.603 Tracking Error 0.079 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset |
#1. Import Tiingo Data from QuantConnect.Data.Custom.Tiingo import * from datetime import datetime, timedelta import numpy as np class TiingoNewsSentimentAlgorithm(QCAlgorithm): def Initialize(self): self.SetStartDate(2016, 11, 1) self.SetEndDate(2017, 3, 1) #2. Add AAPL and NKE symbols to a Manual Universe symbols = [Symbol.Create("AAPL", SecurityType.Equity, Market.USA), Symbol.Create("NKE", SecurityType.Equity, Market.USA)] self.SetUniverseSelection(ManualUniverseSelectionModel(symbols)) # 3. Add an instance of the NewsSentimentAlphaModel self.SetAlpha(NewsSentimentAlphaModel()) self.SetPortfolioConstruction(EqualWeightingPortfolioConstructionModel()) self.SetExecution(ImmediateExecutionModel()) self.SetRiskManagement(NullRiskManagementModel()) # 4. Create a NewsSentimentAlphaModel class with Update() and OnSecuritiesChanged() methods class NewsSentimentAlphaModel(AlphaModel): def __init__(self): pass def Update(self, algorithm, data): insights = [] return insights def OnSecuritiesChanged(self, algorithm, changes): pass