Overall Statistics |
Total Trades 29 Average Win 12.91% Average Loss -1.63% Compounding Annual Return 15.406% Drawdown 12.100% Expectancy 0.909 Net Profit 53.864% Sharpe Ratio 1.247 Probabilistic Sharpe Ratio 62.686% Loss Rate 79% Win Rate 21% Profit-Loss Ratio 7.91 Alpha 0.09 Beta 0.334 Annual Standard Deviation 0.105 Annual Variance 0.011 Information Ratio 0.048 Tracking Error 0.157 Treynor Ratio 0.392 Total Fees $28.79 |
# Watch my Tutorial: https://youtu.be/Lq-Ri7YU5fU from datetime import timedelta from QuantConnect.Data.Custom.CBOE import * class OptionChainProviderPutProtection(QCAlgorithm): def Initialize(self): # set start/end date for backtest self.SetStartDate(2017, 10, 1) self.SetEndDate(2020, 10, 1) # set starting balance for backtest self.SetCash(100000) # add the underlying asset self.equity = self.AddEquity("SPY", Resolution.Minute) self.equity.SetDataNormalizationMode(DataNormalizationMode.Raw) self.symbol = self.equity.Symbol # add VIX data self.vix = self.AddData(CBOE, "VIX").Symbol # initialize IV indicator self.rank = 0 # initialize the option contract with empty string self.contract = str() self.contractsAdded = set() # parameters ------------------------------------------------------------ self.DaysBeforeExp = 2 # number of days before expiry to exit self.DTE = 25 # target days till expiration self.OTM = 0.01 # target percentage OTM of put self.lookbackIV = 150 # lookback length of IV indicator self.IVlvl = 0.5 # enter position at this lvl of IV indicator self.percentage = 0.9 # percentage of portfolio for underlying asset self.options_alloc = 90 # 1 option for X num of shares (balanced would be 100) # ------------------------------------------------------------------------ # schedule Plotting function 30 minutes after every market open self.Schedule.On(self.DateRules.EveryDay(self.symbol), \ self.TimeRules.AfterMarketOpen(self.symbol, 30), \ self.Plotting) # schedule VIXRank function 30 minutes after every market open self.Schedule.On(self.DateRules.EveryDay(self.symbol), \ self.TimeRules.AfterMarketOpen(self.symbol, 30), \ self.VIXRank) # warmup for IV indicator of data self.SetWarmUp(timedelta(self.lookbackIV)) def VIXRank(self): history = self.History(CBOE, self.vix, self.lookbackIV, Resolution.Daily) # (Current - Min) / (Max - Min) self.rank = ((self.Securities[self.vix].Price - min(history["low"])) / (max(history["high"]) - min(history["low"]))) def OnData(self, data): '''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here. Arguments: data: Slice object keyed by symbol containing the stock data ''' if(self.IsWarmingUp): return # buy underlying asset if not self.Portfolio[self.symbol].Invested: self.SetHoldings(self.symbol, self.percentage) # buy put if VIX relatively high if self.rank > self.IVlvl: self.BuyPut(data) # close put before it expires if self.contract: if (self.contract.ID.Date - self.Time) <= timedelta(self.DaysBeforeExp): self.Liquidate(self.contract) self.Log("Closed: too close to expiration") self.contract = str() def BuyPut(self, data): # get option data if self.contract == str(): self.contract = self.OptionsFilter(data) return # if not invested and option data added successfully, buy option elif not self.Portfolio[self.contract].Invested and data.ContainsKey(self.contract): self.Buy(self.contract, round(self.Portfolio[self.symbol].Quantity / self.options_alloc)) def OptionsFilter(self, data): ''' OptionChainProvider gets a list of option contracts for an underlying symbol at requested date. Then you can manually filter the contract list returned by GetOptionContractList. The manual filtering will be limited to the information included in the Symbol (strike, expiration, type, style) and/or prices from a History call ''' contracts = self.OptionChainProvider.GetOptionContractList(self.symbol, data.Time) self.underlyingPrice = self.Securities[self.symbol].Price # filter the out-of-money put options from the contract list which expire close to self.DTE num of days from now otm_puts = [i for i in contracts if i.ID.OptionRight == OptionRight.Put and self.underlyingPrice - i.ID.StrikePrice > self.OTM * self.underlyingPrice and self.DTE - 8 < (i.ID.Date - data.Time).days < self.DTE + 8] if len(otm_puts) > 0: # sort options by closest to self.DTE days from now and desired strike, and pick first contract = sorted(sorted(otm_puts, key = lambda x: abs((x.ID.Date - self.Time).days - self.DTE)), key = lambda x: self.underlyingPrice - x.ID.StrikePrice)[0] if contract not in self.contractsAdded: self.contractsAdded.add(contract) # use AddOptionContract() to subscribe the data for specified contract self.AddOptionContract(contract, Resolution.Minute) return contract else: return str() def Plotting(self): # plot IV indicator self.Plot("Vol Chart", "Rank", self.rank) # plot indicator entry level self.Plot("Vol Chart", "lvl", self.IVlvl) # plot underlying's price self.Plot("Data Chart", self.symbol, self.Securities[self.symbol].Close) # plot strike of put option option_invested = [x.Key for x in self.Portfolio if x.Value.Invested and x.Value.Type==SecurityType.Option] if option_invested: self.Plot("Data Chart", "strike", option_invested[0].ID.StrikePrice) def OnOrderEvent(self, orderEvent): # log order events self.Log(str(orderEvent))