Overall Statistics |
Total Trades 15589 Average Win 0.07% Average Loss -0.01% Compounding Annual Return 227.730% Drawdown 17.600% Expectancy 0.539 Net Profit 34.421% Sharpe Ratio 1.743 Loss Rate 83% Win Rate 17% Profit-Loss Ratio 7.94 Alpha 1.163 Beta -0.004 Annual Standard Deviation 0.667 Annual Variance 0.444 Information Ratio 1.466 Tracking Error 0.679 Treynor Ratio -298.805 Total Fees $18802.72 |
/* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using System; using System.Collections.Concurrent; using System.Linq; using QuantConnect.Data.Market; using QuantConnect.Data.UniverseSelection; using QuantConnect.Indicators; namespace QuantConnect.Algorithm.CSharp { /// <summary> /// In this algorithm we demonstrate how to perform some technical analysis as /// part of your coarse fundamental universe selection /// </summary> public class EmaCrossUniverseSelectionAlgorithm : QCAlgorithm { // tolerance to prevent bouncing const decimal Tolerance = 0.01m; private const int Count = 10; // use Buffer+Count to leave a little in cash private const decimal TargetPercent = 0.1m; private SecurityChanges _changes = SecurityChanges.None; // holds our coarse fundamental indicators by symbol private readonly ConcurrentDictionary<Symbol, SelectionData> _averages = new ConcurrentDictionary<Symbol, SelectionData>(); // declare history time span (here we choose twice the necessary days) private int HistorySpan = 40; // class used to improve readability of the coarse selection function private class SelectionData { public readonly ExponentialMovingAverage Fast; public readonly ExponentialMovingAverage Slow; public SelectionData(IEnumerable<TradeBar> history) { Fast = new ExponentialMovingAverage(10); Slow = new ExponentialMovingAverage(20); foreach (TradeBar tradeBar in history) { Update(tradeBar.EndTime, tradeBar.Close); } } // computes an object score of how much large the fast is than the slow public decimal ScaledDelta { get { return (Fast - Slow)/((Fast + Slow)/2m); } } // updates the EMA50 and EMA100 indicators, returning true when they're both ready public bool Update(DateTime time, decimal value) { return Fast.Update(time, value) && Slow.Update(time, value); } } /// <summary> /// Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized. /// </summary> public override void Initialize() { UniverseSettings.Leverage = 2.0m; UniverseSettings.Resolution = Resolution.Daily; SetStartDate(2010, 01, 01); SetEndDate(2010, 04, 01); SetCash(100*1000); AddUniverse(coarse => { return (from cf in coarse // grab th SelectionData instance for this symbol let avg = _averages.GetOrAdd(cf.Symbol, sym => new SelectionData(GetHistorySpan(cf.Symbol))) // Update returns true when the indicators are ready, so don't accept until they are where avg.Update(cf.EndTime, cf.Price) // only pick symbols who have their 50 day ema over their 100 day ema where avg.Fast > avg.Slow*(1 + Tolerance) // prefer symbols with a larger delta by percentage between the two averages orderby avg.ScaledDelta descending // we only need to return the symbol and return 'Count' symbols select cf.Symbol).Take(Count); }); } /// <summary> /// OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here. /// </summary> /// <param name="data">TradeBars dictionary object keyed by symbol containing the stock data</param> public void OnData(TradeBars data) { if (_changes == SecurityChanges.None) return; // liquidate securities removed from our universe foreach (var security in _changes.RemovedSecurities) { if (security.Invested) { Liquidate(security.Symbol); } } // we'll simply go long each security we added to the universe foreach (var security in _changes.AddedSecurities) { SetHoldings(security.Symbol, TargetPercent); } } public IEnumerable<TradeBar> GetHistorySpan(Symbol symbol) { AddSecurity(SecurityType.Equity, symbol); IEnumerable<TradeBar> history = History(symbol, HistorySpan, Resolution.Daily); RemoveSecurity(symbol); return history; } /// <summary> /// Event fired each time the we add/remove securities from the data feed /// </summary> /// <param name="changes">Object containing AddedSecurities and RemovedSecurities</param> public override void OnSecuritiesChanged(SecurityChanges changes) { _changes = changes; } } }