Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio -0.98 Tracking Error 0.118 Treynor Ratio 0 Total Fees $0.00 |
namespace QuantConnect.Algorithm.CSharp { using System; using System.Collections.Generic; using System.Globalization; using System.Linq; using QuantConnect; using QuantConnect.Algorithm.Framework.Alphas; using QuantConnect.Algorithm.Framework.Execution; using QuantConnect.Algorithm.Framework.Portfolio; using QuantConnect.Algorithm.Framework.Selection; using QuantConnect.Brokerages; using QuantConnect.Data; using QuantConnect.Data.Fundamental; using QuantConnect.Data.UniverseSelection; using QuantConnect.Interfaces; using QuantConnect.Orders; using QuantConnect.Securities.Equity; using Period = Data.Fundamental.Period; using stat = MathNet.Numerics.Statistics.Statistics; //import statistics as stat //import pickle //from collections import deque //class DynamicCalibratedGearbox(QCAlgorithm): public class G_ScoreInvesting : QCAlgorithm { private G_ScoreInvesting __this; private string tech_ROA_key; private int curr_month; private Dictionary<Symbol, Queue<decimal>> tech_ROA; private int quarters; public static class C { public static readonly CultureInfo en_us = new CultureInfo("en-us"); } // def Initialize(self): public override void Initialize() { __this = this; // ### IMPORTANT: FOR USERS RUNNING THIS ALGORITHM IN LIVE TRADING, // ### RUN THE BACKTEST ONCE //self.tech_ROA_key = 'TECH_ROA' __this.tech_ROA_key = "TECH_ROA"; // we need 3 extra years to warmup our ROA values //self.SetStartDate(2012, 9, 1) __this.SetStartDate(2012, 9, 1); //self.SetEndDate(2020, 9, 1) __this.SetEndDate(2019, 9, 1); //self.SetCash(100000) # Set Strategy Cash __this.SetCash(100000); //self.SetBrokerageModel( AlphaStreamsBrokerageModel()) __this.SetBrokerageModel(new AlphaStreamsBrokerageModel()); //self.SetAlpha( ConstantAlphaModel(InsightType.Price, InsightDirection.Up, timedelta(days = 31))) __this.SetAlpha(new ConstantAlphaModel(InsightType.Price, InsightDirection.Up, TimeSpan.FromDays(31))); //self.SetExecution( ImmediateExecutionModel()) __this.SetExecution(new ImmediateExecutionModel()); //self.SetPortfolioConstruction( EqualWeightingPortfolioConstructionModel(lambda time: None)) __this.SetPortfolioConstruction(new EqualWeightingPortfolioConstructionModel(time => null)); //self.AddUniverseSelection( __this.AddUniverseSelection( // FineFundamentalUniverseSelectionModel(self.CoarseFilter, self.FineFilter) new FineFundamentalUniverseSelectionModel(this.CoarseFilter, this.FineFilter) //) ); //self.UniverseSettings.Resolution = Resolution.Daily __this.UniverseSettings.Resolution = Resolution.Daily; //self.curr_month = -1 __this.curr_month = -1; //store ROA of tech stocks //self.tech_ROA = { } __this.tech_ROA = new Dictionary<Symbol, Queue<decimal>>(); //self.symbols = None object symbols = null; // if self.LiveMode and not self.ObjectStore.ContainsKey(self.tech_ROA_key): if (LiveMode && !ObjectStore.ContainsKey(tech_ROA_key)) { //self.Quit('QUITTING: USING LIVE MOVE WITHOUT TECH_ROA VALUES IN OBJECT STORE') __this.Quit("QUITTING: USING LIVE MOVE WITHOUT TECH_ROA VALUES IN OBJECT STORE"); } //self.quarters = 0 __this.quarters = 0; #if DEBUG //If error happened in testing get rid of bad data. Comment this out once close to production //ObjectStore.Delete(tech_ROA_key); #endif } public override void OnEndOfAlgorithm() { //self.Log('Algorithm End') __this.Log("Algorithm End"); //self.SaveData() __this.SaveData(); } // def SaveData(self): public void SaveData() { // ''' // Saves the tech ROA data to ObjectStore // ''' // Symbol objects aren't picklable, hence why we use the ticker string // tech_ROA = {symbol.Value:ROA for symbol, ROA in self.tech_ROA.items()} var tech_ROAsav = new Dictionary<string, Queue<decimal>>(); foreach (Symbol key in tech_ROA.Keys) { tech_ROAsav.Add(key.Value, this.tech_ROA[key]); } //self.ObjectStore.SaveBytes(self.tech_ROA_key, pickle.dumps(tech_ROA)) __this.ObjectStore.SaveJson(tech_ROA_key, tech_ROAsav); } // def CoarseFilter(self, coarse): public IEnumerable<Symbol> CoarseFilter(IEnumerable<CoarseFundamental> coarse) { // # load data from ObjectStore // if len(self.tech_ROA) == 0 and self.ObjectStore.ContainsKey(self.tech_ROA_key): if (this.tech_ROA.Count == 0 && ObjectStore.ContainsKey(tech_ROA_key)) { // tech_ROA = self.ObjectStore.ReadBytes(self.tech_ROA_key) var tech_ROAstr = ObjectStore.ReadJson<Dictionary<string, Queue<decimal>>>(tech_ROA_key); // tech_ROA = pickle.loads(bytearray(tech_ROA)) // self.tech_ROA = { Symbol.Create(ticker, SecurityType.Equity, Market.USA):ROA for ticker, ROA in tech_ROA.items()} //Don't have pickle in C# so instead, deserialize a Dictionary with string tickers and convert them into Symbol keys this.tech_ROA.Clear(); foreach (string key in tech_ROAstr.Keys) { this.tech_ROA.Add(QuantConnect.Symbol.Create(key, SecurityType.Equity, Market.USA), tech_ROAstr[key]); } //return list(self.tech_ROA.keys()) return this.tech_ROA.Keys.ToArray(); } //if self.curr_month == self.Time.month: if (this.curr_month == this.Time.Month) { //return Universe.Unchanged return Universe.Unchanged; } //self.curr_month = self.Time.month __this.curr_month = this.Time.Month; // we only want to update our ROA values every three months //if self.Time.month % 3 != 1: if (this.Time.Month % 3 != 1) { //return Universe.Unchanged return Universe.Unchanged; } //self.quarters += 1 __this.quarters += 1; //return [c.Symbol for c in coarse if c.HasFundamentalData] return coarse.Where(c => c.HasFundamentalData).Select(c => c.Symbol); } // def FineFilter(self, fine): public IEnumerable<Symbol> FineFilter(IEnumerable<FineFundamental> fine) { const int maxlen = 12; Debug("Fine count: " + fine.Count()); //book value == FinancialStatements.BalanceSheet.NetTangibleAssets (book value and NTA are synonyms) //BM (Book-to-Market) == book value / MarketCap //ROA == OperationRatios.ROA //CFROA == FinancialStatements.CashFlowStatement.OperatingCashFlow / FinancialStatements.BalanceSheet.TotalAssets //R&D to MktCap == FinancialStatements.IncomeStatement.ResearchAndDevelopment / MarketCap //CapEx to MktCap == FinancialStatements.CashFlowStatement.CapExReported / MarketCap //Advertising to MktCap == FinancialStatements.IncomeStatement.SellingGeneralAndAdministration / MarketCap // note: this parameter may be slightly higher than pure advertising costs // tech_securities = [f for f in fine if f.AssetClassification.MorningstarSectorCode == MorningstarSectorCode.Technology and // f.OperationRatios.ROA.ThreeMonths] var tech_securities = fine.Where(f => f.AssetClassification.MorningstarSectorCode == MorningstarSectorCode.Technology && f.OperationRatios.ROA.ThreeMonths != 0.0m); // for security in tech_securities: foreach (var security in tech_securities) { Debug("Fine security: " + security.Symbol.Value + "; " + security.Value); //we use deques instead of RWs since deques are picklable //actually in C#, LinkedList would be a good choice, but here we use Queue, though a custom object with its own serialization would be good // symbol = security.Symbol var symbol = security.Symbol; //if symbol not in self.tech_ROA: if (this.tech_ROA.Keys.Contains(symbol) == false) { //3 years * 4 quarters = 12 quarters of data //self.tech_ROA[symbol] = deque(maxlen = 12) //note: cannot not set maxlen on LinkedList, but there is a const int defined as 12 so set it on Queue tech_ROA[symbol] = new Queue<decimal>(maxlen); } //self.tech_ROA [symbol].append(security.OperationRatios.ROA.ThreeMonths) this.tech_ROA[symbol].Enqueue(Convert.ToDecimal(security.OperationRatios.ROA.ThreeMonths)); } // if self.LiveMode: if (LiveMode) { //this ensures we don't lose new data from an algorithm outage // self.SaveData() SaveData(); } //we want to rebalance in the fourth month after the (fiscal) year ends //so that we have the most recent quarter's data //if self.Time.month != 4 or(self.quarters < 12 and not self.LiveMode): if (Time.Month != 4 || (quarters < 12 && LiveMode == false)) { //return Universe.Unchanged return Universe.Unchanged; } //make sure our stocks has these fundamentals //tech_securities = [x for x in tech_securities if x.OperationRatios.ROA.OneYear and // x.FinancialStatements.CashFlowStatement.OperatingCashFlow.TwelveMonths and // x.FinancialStatements.BalanceSheet.TotalAssets.TwelveMonths and // x.FinancialStatements.IncomeStatement.ResearchAndDevelopment.TwelveMonths and // x.FinancialStatements.CashFlowStatement.CapExReported.TwelveMonths and // x.FinancialStatements.IncomeStatement.SellingGeneralAndAdministration.TwelveMonths and // x.MarketCap] tech_securities = tech_securities.Where(x => x.OperationRatios.ROA.OneYear != 0.0m && x.FinancialStatements.CashFlowStatement.OperatingCashFlow.TwelveMonths != 0.0m && x.FinancialStatements.BalanceSheet.TotalAssets.TwelveMonths != 0.0m && x.FinancialStatements.IncomeStatement.ResearchAndDevelopment.TwelveMonths != 0.0m && x.FinancialStatements.CashFlowStatement.CapExReported.TwelveMonths != 0.0m && x.FinancialStatements.IncomeStatement.SellingGeneralAndAdministration.TwelveMonths != 0.0m && x.MarketCap != 0.0m); //compute the variance of the ROA for each tech stock // tech_VARROA = {symbol:stat.variance(ROA) for symbol, ROA in self.tech_ROA.items() if len(ROA) == ROA.maxlen} var tech_VARROA = new Dictionary<Symbol, double>(); foreach (var key in tech_ROA.Keys) { var item = tech_ROA[key]; if (item.Count != maxlen) continue; var variance = stat.Variance(item.Select(i => (double)i)); tech_VARROA[key] = variance; } //if len(tech_VARROA) < 2: if (tech_VARROA.Count < 2) { //return Universe.Unchanged return Universe.Unchanged; } // tech_VARROA_median = stat.median(tech_VARROA.values()) var tech_VARROA_median = stat.Median(tech_VARROA.Values); //we will now map tech Symbols to various fundamental ratios, // and compute the median for each ratio //ROA 1-year // tech_ROA1Y = { x.Symbol:x.OperationRatios.ROA.OneYear for x in tech_securities} var tech_ROA1Y = MakeDictionary(tech_securities, x => x.OperationRatios.ROA.OneYear); //tech_ROA1Y_median = stat.median(tech_ROA1Y.values()) var tech_ROA1Y_median = stat.Median(tech_ROA1Y.Values.Select(v => (double)v)); /* Cash Flow ROA tech_CFROA = { x.Symbol: ( x.FinancialStatements.CashFlowStatement.OperatingCashFlow.TwelveMonths / x.FinancialStatements.BalanceSheet.TotalAssets.TwelveMonths ) for x in tech_securities } */ var tech_CFROA = MakeDictionary(tech_securities, x => x.FinancialStatements.CashFlowStatement.OperatingCashFlow.TwelveMonths / x.FinancialStatements.BalanceSheet.TotalAssets.TwelveMonths); // tech_CFROA_median = stat.median(tech_CFROA.values()) var tech_CFROA_median = stat.Median(tech_CFROA.Values.Select(v => (double)v)); //R&D to MktCap //tech_RD2MktCap = { // x.Symbol: ( //x.FinancialStatements.IncomeStatement.ResearchAndDevelopment.TwelveMonths / x.MarketCap //) for x in tech_securities} var tech_RD2MktCap = MakeDictionary(tech_securities, x => x.FinancialStatements.IncomeStatement.ResearchAndDevelopment.TwelveMonths / x.MarketCap); // tech_RD2MktCap_median = stat.median(tech_RD2MktCap.values()) var tech_RD2MktCap_median = stat.Median(tech_RD2MktCap.Values.Select(v => (double)v)); //CapEx to MktCap //tech_CaPex2MktCap = { // x.Symbol: ( //x.FinancialStatements.CashFlowStatement.CapExReported.TwelveMonths / x.MarketCap //) for x in tech_securities} var tech_CaPex2MktCap = MakeDictionary(tech_securities, x => x.FinancialStatements.CashFlowStatement.CapExReported.TwelveMonths / x.MarketCap); // tech_CaPex2MktCap_median = stat.median(tech_CaPex2MktCap.values()) var tech_CaPex2MktCap_median = stat.Median(tech_CaPex2MktCap.Values.Cast<double>()); //Advertising to MktCap //tech_Ad2MktCap = { // x.Symbol: ( //x.FinancialStatements.IncomeStatement.SellingGeneralAndAdministration.TwelveMonths / x.MarketCap //) for x in tech_securities} var tech_Ad2MktCap = MakeDictionary(tech_securities, x => x.FinancialStatements.IncomeStatement.SellingGeneralAndAdministration.TwelveMonths / x.MarketCap); // tech_Ad2MktCap_median = stat.median(tech_Ad2MktCap.values()) var tech_Ad2MktCap_median = stat.Median(tech_Ad2MktCap.Values.Cast<double>()); //sort fine by book-to-market ratio, get lower quintile // has_book = [f for f in fine if f.FinancialStatements.BalanceSheet.NetTangibleAssets.TwelveMonths and f.MarketCap] var has_book = fine.Where(f => f.FinancialStatements.BalanceSheet.NetTangibleAssets.TwelveMonths != 0.0m && f.MarketCap != 0.0m); // sorted_by_BM = sorted(has_book, key = lambda x: x.FinancialStatements.BalanceSheet.NetTangibleAssets.TwelveMonths / x.MarketCap)[:len(has_book)//4] var sorted_by_BM = has_book.OrderBy(x => x.FinancialStatements.BalanceSheet.NetTangibleAssets.TwelveMonths / x.MarketCap).Take((int)Math.Floor(has_book.Count() / 4.0m)); //choose tech stocks from lower quintile // tech_symbols = [f.Symbol for f in sorted_by_BM if f in tech_securities] var tech_symbols = sorted_by_BM.Where(f => tech_securities.Any(ts => ts.Symbol == f.Symbol)).Select(x => x.Symbol); // ratioDicts_medians = [(tech_ROA1Y, tech_ROA1Y_median), // (tech_CFROA, tech_CFROA_median), (tech_RD2MktCap, tech_RD2MktCap_median), // (tech_CaPex2MktCap, tech_CaPex2MktCap_median), (tech_Ad2MktCap, tech_Ad2MktCap_median)] var ratioDicts_medians = new Dictionary<Dictionary<Symbol, decimal>, double>(); ratioDicts_medians.Add(tech_ROA1Y, tech_ROA1Y_median); ratioDicts_medians.Add(tech_CFROA, tech_CFROA_median); ratioDicts_medians.Add(tech_RD2MktCap, tech_RD2MktCap_median); ratioDicts_medians.Add(tech_CaPex2MktCap, tech_CaPex2MktCap_median); ratioDicts_medians.Add(tech_Ad2MktCap, tech_Ad2MktCap_median); //def compute_g_score(symbol): var compute_g_score = new Func<Symbol, decimal>(symbol => { // g_score = 0 var g_score = 0.0m; //if tech_CFROA[symbol] > tech_ROA1Y[symbol]: if (tech_CFROA[symbol] > tech_ROA1Y[symbol]) { //g_score += 1 g_score += 1.0m; } //if symbol in tech_VARROA and tech_VARROA[symbol] < tech_VARROA_median: if (tech_VARROA.ContainsKey(symbol) && tech_VARROA[symbol] < tech_VARROA_median) //g_score += 1 g_score += 1.0m; // for ratio_dict, median in ratioDicts_medians: foreach (var ratio_dict in ratioDicts_medians.Keys) { var median = ratioDicts_medians[ratio_dict]; //if symbol in ratio_dict and ratio_dict[symbol] > median: if (ratio_dict.ContainsKey(symbol) && ratio_dict[symbol] > (decimal)median) //g_score += 1 g_score += 1; } //return g_score return g_score; }); //compute g-scores for each symbol // g_scores = { symbol: compute_g_score(symbol) for symbol in tech_symbols} var g_scores = new Dictionary<Symbol, decimal>(); foreach (var symbol in tech_symbols) { g_scores.Add(symbol, compute_g_score(symbol)); } //return [symbol for symbol, g_score in g_scores.items() if g_score >= 5] return g_scores.Keys.Where(key => g_scores[key] >= 5.0m); } private static Dictionary<Symbol, decimal> MakeDictionary(IEnumerable<FineFundamental> tech_securities, Func<FineFundamental, decimal> dec) { var tech_dict = new Dictionary<Symbol, decimal>(); foreach (var x in tech_securities) { tech_dict.Add(x.Symbol, dec(x)); } return tech_dict; } } }