Overall Statistics |
Total Trades 187 Average Win 2.77% Average Loss -2.60% Compounding Annual Return 8.224% Drawdown 24.400% Expectancy 0.422 Net Profit 155.806% Sharpe Ratio 0.648 Loss Rate 31% Win Rate 69% Profit-Loss Ratio 1.07 Alpha 0.091 Beta -0.108 Annual Standard Deviation 0.136 Annual Variance 0.019 Information Ratio 0.501 Tracking Error 0.136 Treynor Ratio -0.816 Total Fees $637.26 |
import decimal as d from datetime import datetime, timedelta from decimal import Decimal class VigilantAssetAllocationAlgorithm(QCAlgorithm): def Initialize(self): self.SetCash(25000) self.SetStartDate(2007,1,1) self.LastRotationTime = datetime.min self.RotationInterval = timedelta(days=30) self.first = True # these are the growth symbols we'll rotate through GrowthSymbols =["SPY", "EFA", "EEM", "AGG"] # these are the safety symbols we go to when things are looking bad for growth SafetySymbols = ["LQD", "IEF", "SHY"] # I split the indicators into two different sets to make it easier for illustrative purposes below. # Storing all risky asset data into SymbolData object self.SymbolData = [] for symbol in list(GrowthSymbols): self.AddSecurity(SecurityType.Equity, symbol, Resolution.Minute) self.oneMonthPerformance = self.MOMP(symbol, 21, Resolution.Daily) self.threeMonthPerformance = self.MOMP(symbol, 63, Resolution.Daily) self.sixMonthPerformance = self.MOMP(symbol, 126, Resolution.Daily) self.twelveMonthPerformance = self.MOMP(symbol, 252, Resolution.Daily) self.SymbolData.append([symbol, self.oneMonthPerformance, self.threeMonthPerformance, self.sixMonthPerformance, self.twelveMonthPerformance]) # Storing all risk-free data into SafetyData object self.SafetyData = [] for symbol in list(SafetySymbols): self.AddSecurity(SecurityType.Equity, symbol, Resolution.Minute) self.oneMonthPerformance = self.MOMP(symbol, 21, Resolution.Daily) self.threeMonthPerformance = self.MOMP(symbol, 63, Resolution.Daily) self.sixMonthPerformance = self.MOMP(symbol, 126, Resolution.Daily) self.twelveMonthPerformance = self.MOMP(symbol, 252, Resolution.Daily) self.SafetyData.append([symbol, self.oneMonthPerformance, self.threeMonthPerformance, self.sixMonthPerformance, self.twelveMonthPerformance]) def OnData(self, data): if self.first: self.first = False self.LastRotationTime = self.Time return delta = self.Time - self.LastRotationTime if delta > self.RotationInterval: self.LastRotationTime = self.Time ##Using the Score class at the bottom, compute the score for each risky asset. ##This approach overweights the front month momentum value and progressively underweights older momentum values orderedObjScores = sorted(self.SymbolData, key=lambda x: Score(x[1].Current.Value,x[2].Current.Value,x[3].Current.Value,x[4].Current.Value).ObjectiveScore(), reverse=True) ##Using the Score class at the bottom, compute the score for each risk-free asset. orderedSafeScores = sorted(self.SafetyData, key=lambda x: Score(x[1].Current.Value,x[2].Current.Value,x[3].Current.Value,x[4].Current.Value).ObjectiveScore(), reverse=True) ##Count the number of risky assets with negative momentum scores and store in N. If all four of the offensive assets exhibit positive momentum scores, ##select the offensive asset with the highest score and allocate 100% of the portfolio to that asset at the close N = 0 for x in orderedObjScores: self.Log(">>SCORE>>" + x[0] + ">>" + str(Score(x[1].Current.Value,x[2].Current.Value,x[3].Current.Value,x[4].Current.Value).ObjectiveScore())) if Score(x[1].Current.Value,x[2].Current.Value,x[3].Current.Value,x[4].Current.Value).ObjectiveScore() < 0: N += 1 # pick which one is best from risky and risk-free symbols and store for use below bestGrowth = orderedObjScores[0] bestSafe = orderedSafeScores[0] ## If any of the four risky assets exhibit negative momentum scores, select the risk-free asset (LQD, IEF or SHY) with the highest score ## (regardless of whether the score is > 0) and allocate 100% of the portfolio to that asset at the close. if N > 0: self.Log("PREBUY>>LIQUIDATE>>") if not self.Portfolio[bestSafe[0]].Invested: self.Liquidate() self.Log(">>BUY>>" + str(bestSafe[0]) + "@" + str(Decimal(100) * bestSafe[1].Current.Value)) self.SetHoldings(bestSafe[0], 1) ## If none of the risky assets come back with negative momentum scores, allocation 100% to the best scoring risky asset and hold until month end else: self.Log("PREBUY>>LIQUIDATE>>") if not self.Portfolio[bestGrowth[0]].Invested: self.Liquidate() self.Log(">>BUY>>" + str(bestGrowth[0]) + "@" + str(Decimal(100) * bestGrowth[1].Current.Value)) self.SetHoldings(bestGrowth[0], 1) class Score(object): def __init__(self,oneMonthPerformanceValue,threeMonthPerformanceValue,sixMonthPerformanceValue,twelveMonthPerformanceValue): self.oneMonthPerformance = oneMonthPerformanceValue self.threeMonthPerformance = threeMonthPerformanceValue self.sixMonthPerformance = sixMonthPerformanceValue self.twelveMonthPerformance = twelveMonthPerformanceValue def ObjectiveScore(self): weight1 = 12 weight2 = 4 weight3 = 2 return (weight1 * self.oneMonthPerformance) + (weight2 * self.threeMonthPerformance) + (weight3 * self.sixMonthPerformance) + self.twelveMonthPerformance