Overall Statistics
Total Trades
36
Average Win
0.38%
Average Loss
-0.08%
Compounding Annual Return
189.789%
Drawdown
1.100%
Expectancy
2.128
Net Profit
3.158%
Sharpe Ratio
15.425
Probabilistic Sharpe Ratio
97.679%
Loss Rate
44%
Win Rate
56%
Profit-Loss Ratio
4.63
Alpha
1.735
Beta
-0.066
Annual Standard Deviation
0.107
Annual Variance
0.011
Information Ratio
1.883
Tracking Error
0.149
Treynor Ratio
-24.746
Total Fees
$0.00
from Execution.ImmediateExecutionModel import ImmediateExecutionModel
from System import *
from QuantConnect import *
from QuantConnect.Algorithm import *
from QuantConnect.Data import *
from datetime import timedelta
import pandas as pd
from io import StringIO
import datetime

 
class main(QCAlgorithm):

    def Initialize(self):
        self.SetStartDate(2020,7,27)  # Set Start Date
        self.SetEndDate(2020,12,31)# Set End Date
        self.SetCash(100000)  # Set Strategy Cash
        
        # If using dropbox remember to add the &dl=1 to trigger a download
        csv = self.Download("https://www.dropbox.com/s/2hlxb85lo7y10i3/test.csv?dl=1")

        # read file (which needs to be a csv) to a pandas DataFrame. include following imports above
    
        self.df = pd.read_csv(StringIO(csv))
        
        self.SetExecution(ImmediateExecutionModel())
        self.AveragePrice = None

        for i in range(len(self.df)) :
            self.security=str(self.df.iloc[i,0]).replace(" ", "")
            #self.quantity=self.df.iloc[i,1]
            self.AddEquity(self.security,Resolution.Minute).SetDataNormalizationMode(DataNormalizationMode.Raw)

        ############## SLIPPAGE & FEE MODEL####################################################################
            self.Securities[self.security].FeeModel = ConstantFeeModel(0)
            self.Securities[self.security].SlippageModel = ConstantSlippageModel(0)
        
   
        
    
            
    ''' let's first solve the problem above of linking the buy and liquidate action to the proper financial instrument
    
        ## CODE TO TRIGGER STOP LOSSES AND TAKE PROFITS    
    def OnData(self, slice):
            if not slice.Bars.ContainsKey(self.security): return
        
            if self.AveragePrice != None :
                    if (slice[self.security].Price > self.AveragePrice * self.df.iloc[0,2]):
                        self.Liquidate(self.security," TAKE PROFIT @ " + str(slice[self.security].Price) +" AverageFillPrice " +str(self.AveragePrice))
                    if (slice[self.security].Price < self.AveragePrice * self.df.iloc[0,3]):
                        self.Liquidate(self.security," STOP LOSS @ " + str(slice[self.security].Price) +" AverageFillPrice " +str(self.AveragePrice))
    '''
    
    def OnData(self, slice):


        for i in range(len(self.df)):
                if slice.Time.hour==self.df.iloc[i,4] and slice.Time.minute==self.df.iloc[i,5]:    
                    self.MarketOrder(str(self.df.iloc[i,0]).replace(" ", ""),self.df.iloc[i,1])
                    self.AveragePrice = self.Portfolio[str(self.df.iloc[i,0]).replace(" ", "")].AveragePrice
        for i in range(len(self.df)):
                if slice.Time.hour==self.df.iloc[i,6] and slice.Time.minute==self.df.iloc[i,7]:
                    self.Liquidate(str(self.df.iloc[i,0]).replace(" ", ""))