Overall Statistics |
Total Trades 36 Average Win 0.38% Average Loss -0.08% Compounding Annual Return 189.789% Drawdown 1.100% Expectancy 2.128 Net Profit 3.158% Sharpe Ratio 15.425 Probabilistic Sharpe Ratio 97.679% Loss Rate 44% Win Rate 56% Profit-Loss Ratio 4.63 Alpha 1.735 Beta -0.066 Annual Standard Deviation 0.107 Annual Variance 0.011 Information Ratio 1.883 Tracking Error 0.149 Treynor Ratio -24.746 Total Fees $0.00 |
from Execution.ImmediateExecutionModel import ImmediateExecutionModel from System import * from QuantConnect import * from QuantConnect.Algorithm import * from QuantConnect.Data import * from datetime import timedelta import pandas as pd from io import StringIO import datetime class main(QCAlgorithm): def Initialize(self): self.SetStartDate(2020,7,27) # Set Start Date self.SetEndDate(2020,12,31)# Set End Date self.SetCash(100000) # Set Strategy Cash # If using dropbox remember to add the &dl=1 to trigger a download csv = self.Download("https://www.dropbox.com/s/2hlxb85lo7y10i3/test.csv?dl=1") # read file (which needs to be a csv) to a pandas DataFrame. include following imports above self.df = pd.read_csv(StringIO(csv)) self.SetExecution(ImmediateExecutionModel()) self.AveragePrice = None for i in range(len(self.df)) : self.security=str(self.df.iloc[i,0]).replace(" ", "") #self.quantity=self.df.iloc[i,1] self.AddEquity(self.security,Resolution.Minute).SetDataNormalizationMode(DataNormalizationMode.Raw) ############## SLIPPAGE & FEE MODEL#################################################################### self.Securities[self.security].FeeModel = ConstantFeeModel(0) self.Securities[self.security].SlippageModel = ConstantSlippageModel(0) ''' let's first solve the problem above of linking the buy and liquidate action to the proper financial instrument ## CODE TO TRIGGER STOP LOSSES AND TAKE PROFITS def OnData(self, slice): if not slice.Bars.ContainsKey(self.security): return if self.AveragePrice != None : if (slice[self.security].Price > self.AveragePrice * self.df.iloc[0,2]): self.Liquidate(self.security," TAKE PROFIT @ " + str(slice[self.security].Price) +" AverageFillPrice " +str(self.AveragePrice)) if (slice[self.security].Price < self.AveragePrice * self.df.iloc[0,3]): self.Liquidate(self.security," STOP LOSS @ " + str(slice[self.security].Price) +" AverageFillPrice " +str(self.AveragePrice)) ''' def OnData(self, slice): for i in range(len(self.df)): if slice.Time.hour==self.df.iloc[i,4] and slice.Time.minute==self.df.iloc[i,5]: self.MarketOrder(str(self.df.iloc[i,0]).replace(" ", ""),self.df.iloc[i,1]) self.AveragePrice = self.Portfolio[str(self.df.iloc[i,0]).replace(" ", "")].AveragePrice for i in range(len(self.df)): if slice.Time.hour==self.df.iloc[i,6] and slice.Time.minute==self.df.iloc[i,7]: self.Liquidate(str(self.df.iloc[i,0]).replace(" ", ""))