Overall Statistics
Total Trades
328
Average Win
0.18%
Average Loss
-0.32%
Compounding Annual Return
8.400%
Drawdown
6.500%
Expectancy
-0.035
Net Profit
7.700%
Sharpe Ratio
0.852
Probabilistic Sharpe Ratio
42.307%
Loss Rate
39%
Win Rate
61%
Profit-Loss Ratio
0.57
Alpha
0
Beta
0
Annual Standard Deviation
0.07
Annual Variance
0.005
Information Ratio
0.852
Tracking Error
0.07
Treynor Ratio
0
Total Fees
$322.00
Estimated Strategy Capacity
$0
Lowest Capacity Asset
SPY R735QTJ8XC9X
from System.Drawing import Color
from AlgorithmImports import *

class Benchmark:

    def __init__(self, algo, underlying,  shares = 100, indicators = {}):
        self.algo = algo
        self.underlying = underlying
        # Variable to hold the last calculated benchmark value
        self.benchmarkCash = None
        self.benchmarkShares = shares

        self.tradingChart = Chart('Trade Plot')
        # On the Trade Plotter Chart we want 3 series: trades and price:
        self.tradingChart.AddSeries(Series('Sell Call', SeriesType.Scatter, '$', Color.Green, ScatterMarkerSymbol.Circle))
        self.tradingChart.AddSeries(Series('Buy Call', SeriesType.Scatter, '$', Color.Red, ScatterMarkerSymbol.Triangle))
        # self.tradingChart.AddSeries(Series('Sell Put', SeriesType.Scatter, '$', Color.Green, ScatterMarkerSymbol.Circle))
        # self.tradingChart.AddSeries(Series('Buy Put', SeriesType.Scatter, '$', Color.Red, ScatterMarkerSymbol.Triangle))
        self.tradingChart.AddSeries(Series('Price', SeriesType.Line, '$', Color.White))
        self.algo.AddChart(self.tradingChart)
        
        self.AddIndicators(indicators)

        self.resample = datetime.min
        self.resamplePeriod = (self.algo.EndDate - self.algo.StartDate) / 2000

    def AddIndicators(self, indicators):
        self.indicators = indicators
        for name, indicator in indicators.items(): 
            self.algo.AddChart(Chart(name))

    def PrintBenchmark(self):
        if self.algo.Time <= self.resample: return

        self.resample = self.algo.Time  + self.resamplePeriod
        # self.__PrintBuyHold()
        self.__PrintTrades()
        self.__PrintCash()
        self.__PrintIndicators()

    def PrintTrade(self, order):
        ''' Prints the price of the option on our trade chart. '''
        plotTradeName = ''
        security = order.Symbol.ID
        if security.OptionRight == OptionRight.Call:
            optionType = 'Call'
        elif security.OptionRight == OptionRight.Put:
            optionType = 'Put'

        if order.Quantity < 0:
            plotTradeName = 'Sell {}'.format(optionType)
        else:
            plotTradeName = 'Buy {}'.format(optionType)
    
        self.algo.Plot('Trade Plot', plotTradeName, security.StrikePrice)

    def __PrintIndicators(self):
        ''' Prints the indicators array values to the Trade Plot chart.  '''
        for name, indicator in self.indicators.items():
            if name == 'BB':
                self.__PlotBB(indicator)
            elif name == 'AROON':
                self.__PlotAROON(indicator)
            elif name == 'MACD':
                self.__PlotMACD(indicator)
            else:
                self.algo.PlotIndicator(name, indicator)

    def __PlotBB(self, indicator):
        self.algo.Plot('BB', 'Price', self.__UnderlyingPrice())
        self.algo.Plot('BB', 'BollingerUpperBand', indicator.UpperBand.Current.Value)
        self.algo.Plot('BB', 'BollingerMiddleBand', indicator.MiddleBand.Current.Value)
        self.algo.Plot('BB', 'BollingerLowerBand', indicator.LowerBand.Current.Value)

    def __PlotMACD(self, indicator):
        # self.algo.Plot('MACD', 'MACD', indicator.Current.Value)
        # self.algo.Plot('MACD', 'MACDSignal', indicator.Signal.Current.Value)
        # self.algo.Plot("MACD", "Price", self.__UnderlyingPrice())
        self.algo.Plot("MACD", "Zero", 0)
        self.algo.Plot('MACD', 'MACDSignal', indicator.Signal.Current.Value)

    def __PlotAROON(self, indicator):
        self.algo.Plot('AROON', 'Aroon', indicator.Current.Value)
        self.algo.Plot('AROON', 'AroonUp', indicator.AroonUp.Current.Value)
        self.algo.Plot('AROON', 'AroonDown', indicator.AroonDown.Current.Value)

    def __PrintCash(self):
        ''' Prints the cash in the portfolio in a separate chart. '''
        self.algo.Plot('Cash', 'Options gain', self.algo.Portfolio.Cash)

    def __PrintTrades(self):
        ''' Prints the underlying price on the trades chart. '''
        self.algo.Plot('Trade Plot', 'Price', self.__UnderlyingPrice())

    def __PrintBuyHold(self):
        ''' Simulate buy and hold the shares. We use the same number of shares as the backtest.
            In this situation is 100 shares + the cash of the portfolio.'''
        if not self.benchmarkCash:
            self.benchmarkCash = self.algo.Portfolio.TotalPortfolioValue - self.benchmarkShares * self.__UnderlyingPrice()

        self.algo.Plot("Strategy Equity", "Buy & Hold", self.benchmarkCash + self.benchmarkShares * self.__UnderlyingPrice())

    def __UnderlyingPrice(self):
        return self.algo.Securities[self.underlying].Close
#region imports
from AlgorithmImports import *
#endregion
#region imports
from .Benchmark import Benchmark
#endregion


# Your New Python File
#region imports
from AlgorithmImports import *
#endregion

class MarketHours:
    def __init__(self, algorithm, symbol):
        self.algorithm = algorithm
        self.hours = algorithm.Securities[symbol].Exchange.Hours
        
    def get_CurrentOpen(self):
        return self.hours.GetNextMarketOpen(self.algorithm.Time, False)

    def get_CurrentClose(self):
        return self.hours.GetNextMarketClose(self.get_CurrentOpen(), False)
#region imports
from AlgorithmImports import *
from itertools import groupby
from QuantConnect.Logging import *
from MarketHours import MarketHours
from PortfolioHandler import Handler
from PortfolioHandler.OStrategies import Straddle
#endregion

class MilkTheCowAlphaModel(AlphaModel):
    algorithm = None

    def __init__(self, algorithm, ticker, option):
        self.ticker = ticker
        self.option = option
        self.algorithm = algorithm
        self.symbol = algorithm.AddEquity(self.ticker)
        self.marketHours = MarketHours(algorithm, self.ticker)
        self.portfolio = Handler(self.algorithm)

        self.LeapExpiration = ExpirationRange(365, 395)
        self.ShortExpiration = ExpirationRange(7, 14)

        self.Credit = 0.0

    def Update(self, algorithm, data):
        insights = []
        if algorithm.IsWarmingUp: return insights

        if self.ticker not in data.Keys: return insights
        
        self.algorithm.benchmark.PrintBenchmark()
        
        if self.marketHours.get_CurrentClose().hour - 2 > self.algorithm.Time.hour > self.marketHours.get_CurrentOpen().hour + 2:
            insights.extend(self.Monitor(data))
            insights.extend(self.Scanner(data))

        # if self.algorithm.Time.hour > self.marketHours.get_CurrentOpen().hour + 4 and self.algorithm.Time.minute == 15:
        #     insights.extend(self.Monitor(data))

        # if 11 > self.algorithm.Time.hour >= 10 and (self.algorithm.Time.minute == 15 or self.algorithm.Time.minute == 30 or self.algorithm.Time.minute == 45):
        #     insights.extend(self.Scanner(data))

        return Insight.Group(insights)

    def Monitor(self, data):
        
        insights = []
        stockPrice = self.algorithm.Securities[self.ticker].Price
        longStraddles = self.portfolio.StraddleOptions(self.ticker, expiration = self.LeapExpiration.ToArr(), short = False)
        shortStraddles = self.portfolio.StraddleOptions(self.ticker, expiration = self.ShortExpiration.ToArr(), short = True)

        #### EXIT RULES
        # Exiting the strategy is defined as closing both straddles and is triggered by one of two conditions.
        # - Long LEAP Straddle DTE < 335
        # - Short Straddle indicates over a 325% loss; anything less should just be adjusted, see below.
        if len(longStraddles) > 0 and len(shortStraddles) > 0:
            longStraddle = longStraddles[0]
            shortStraddle = shortStraddles[0]
            close = False
            if longStraddle.ExpiresIn(self.algorithm) < 335:
                close = True
            if shortStraddle.UnrealizedProfit() <= -325:
                close = True

            if close:
                self.Credit = 0.0
                return [
                    Insight.Price(longStraddle.Call.Symbol, Resolution.Minute, 15, InsightDirection.Flat),
                    Insight.Price(longStraddle.Put.Symbol, Resolution.Minute, 15, InsightDirection.Flat),
                    Insight.Price(shortStraddle.Call.Symbol, Resolution.Minute, 15, InsightDirection.Flat),
                    Insight.Price(shortStraddle.Put.Symbol, Resolution.Minute, 15, InsightDirection.Flat)
                ]

        #### LONG LEAP STRADDLE
        # ##### Standard Roll Triggers:
        # - Less than 335 days expiration (DTE).
        # - When underlying price moves more than 6.5% from strike price.
        # - When profit on LEAP straddle is > 0.5%

        # __Note: IV Opportunity Rolling no longer recommended.__
        # __When rolling, select strikes ATM and DTE = 365 +/- 30 (335 – 395).__
        if len(longStraddles) > 0:
            longStraddle = longStraddles[0]
            close = False
            if longStraddle.ExpiresIn(self.algorithm) < 335:
                close = True
            if (longStraddle.Strike() / 1.065) > stockPrice or stockPrice > (longStraddle.Strike() * 1.065):
                close = True
            if longStraddle.UnrealizedProfit() > 0.5:
                close = True
            
            if close:
                insights.extend(
                    [
                        Insight.Price(longStraddle.Call.Symbol, Resolution.Minute, 15, InsightDirection.Flat),
                        Insight.Price(longStraddle.Put.Symbol, Resolution.Minute, 15, InsightDirection.Flat)
                    ]
                )

        # #### SHORT STRADDLE
        # ##### Standard Roll Triggers:
        # - 1 day to expiration (DTE).
        # - When underlying price moves more than 5% from strike price.
        # - 2-5 days to expiration (DTE) AND spot price is $1.00 or less away from the strike price.
        # - When profit on short straddle is > 20%

        # __When rolling, select strikes ATM and select the minimum DTE to yield a net credit, ideally 7 DTE, but with a maximum DTE of 30.__

        # > - LEAP: Roll when the underlying price moves more than 6.5% from strike price.
        # >    - When rolling, select strikes ATM and DTE 335-425 days out.
        # > - Short: Roll 1 day prior to expiration or when underlying price moves more than 5% from the strike price.
        # >    - When rolling select strikes ATM and select the minimum DTE to yield a net credit (max of 30 DTE).

        if len(shortStraddles) > 0:
            shortStraddle = shortStraddles[0]
            close = False
            if shortStraddle.ExpiresIn(self.algorithm) <= 1:
                close = True
            if (shortStraddle.Strike() / 1.05) > stockPrice or stockPrice > (shortStraddle.Strike() * 1.05):
                close = True
            # i placed 10 here instead of 1$ it's too little. 10 might be also
            # if 2 >= shortStraddle.ExpiresIn(self.algorithm) <= 5 and stockPrice > shortStraddle.Strike() + 1:
            #     close = True
            if shortStraddle.UnrealizedProfit() > 20:
                close = True
            
            if close:
                self.Credit -= shortStraddle.AskPrice(self.algorithm)
                insights.extend(
                    [
                        Insight.Price(shortStraddle.Call.Symbol, Resolution.Minute, 15, InsightDirection.Flat),
                        Insight.Price(shortStraddle.Put.Symbol, Resolution.Minute, 15, InsightDirection.Flat)
                    ]
                )

        return insights

    def Scanner(self, data):
        insights = []

        lenShortStraddle = len(self.portfolio.StraddleOptions(self.ticker, expiration = self.ShortExpiration.ToArr(), short = True))
        lenLeapStraddle = len(self.portfolio.StraddleOptions(self.ticker, expiration = self.LeapExpiration.ToArr(), short = False))
        # SCAN LEAP
        # - if no LEAP
        if lenLeapStraddle == 0:
            longStraddle = self.__FindStraddle(data, expiration = self.LeapExpiration)
            
            if longStraddle:
                insights.extend([
                    Insight.Price(longStraddle.Call, Resolution.Minute, 15, InsightDirection.Up),
                    Insight.Price(longStraddle.Put, Resolution.Minute, 15, InsightDirection.Up),
                ])
        
        # SCAN SHORT
        # - if LEAP and no SHORT
        # First open the leapStraddle and after that the shortStraddle!
        if lenShortStraddle == 0 and lenLeapStraddle > 0:
            shortStraddle = self.__FindStraddle(data, expiration = self.ShortExpiration, minCredit = self.Credit)
            if shortStraddle: 
                self.Credit += shortStraddle.AskPrice(self.algorithm)
                insights.extend([
                    Insight.Price(shortStraddle.Call, Resolution.Minute, 15, InsightDirection.Down),
                    Insight.Price(shortStraddle.Put, Resolution.Minute, 15, InsightDirection.Down),
                ])

        return insights

    def __FindStraddle(self, data, expiration, minCredit = 0.0):
        put = None
        call = None
        stockPrice = self.algorithm.Securities[self.ticker].Price
        # if we have positive credit then we don't care
        if minCredit > 0.0: minCredit = 0.0
        # if we have negative credit then remove the negative sign.
        if minCredit < 0.0: minCredit = abs(minCredit)

        contracts = self.algorithm.OptionChainProvider.GetOptionContractList(self.ticker, self.algorithm.Time.date())
        if len(contracts) == 0 : return None
        
        # # only tradable contracts
        # # !!IMPORTANT!!: to escape the error `Backtest Handled Error: The security with symbol 'SPY 220216P00425000' is marked as non-tradable.`
        contracts = [x for x in contracts if self.algorithm.Securities[x.ID.Symbol].IsTradable]
        
        # TODO Change this to pick all the contracts in this expiration range that are ATM
        # TODO after getting all the contracts for this range and ATM then call self.algorithm.AddOptionContract on all
        # TODO after doing the AddOptionContract then filter by credit using self.algorithm.Securities[x].AskPrice
        contracts = [i for i in contracts if expiration.Start <= (i.ID.Date.date() - self.algorithm.Time.date()).days <= expiration.Stop]

        if not contracts: return None
        
        contracts = sorted(contracts, key = lambda x: x.ID.Date, reverse=False)
        # Pick all the ATM contracts per day
        ATMcontracts = []
        for expiry, g in groupby(contracts, lambda x: x.ID.Date):
            group = list(g)
            calls = [c for c in group if c.ID.OptionRight == OptionRight.Call]
            puts = [c for c in group if c.ID.OptionRight == OptionRight.Put]
            
            if not calls or not puts: continue

            ATMcontracts.extend([min(calls, key=lambda x: abs(stockPrice - x.ID.StrikePrice))])
            ATMcontracts.extend([min(puts, key=lambda x: abs(stockPrice - x.ID.StrikePrice))])
        contracts = ATMcontracts

        # add all the option contracts so we can access all the data.
        for c in contracts:
            self.algorithm.AddOptionContract(c, Resolution.Minute)

        # try and get put and call that have a higher credit than specified min.
        put = min([c for c in contracts if c.ID.OptionRight == OptionRight.Put], key=lambda x: abs(self.algorithm.Securities[c.Value].AskPrice - minCredit / 2))
        call = min([c for c in contracts if c.ID.OptionRight == OptionRight.Call], key=lambda x: abs(self.algorithm.Securities[c.Value].AskPrice - minCredit / 2))
        
        if not put or not call: return None
        if put.ID.StrikePrice != call.ID.StrikePrice: return None
        self.algorithm.AddOptionContract(put, Resolution.Minute)
        self.algorithm.AddOptionContract(call, Resolution.Minute)

        return Straddle(put, call)

    # Method that returns a boolean if the security expires in the given days
    # @param security [Security] the option contract
    def __ExpiresIn(self, security):
        return (security.Expiry.date() - self.algorithm.Time.date()).days

    def __SignalDeltaPercent(self):
        return (self.indicators['MACD'].Current.Value - self.indicators['MACD'].Signal.Current.Value) / self.indicators['MACD'].Fast.Current.Value

class ExpirationRange:
    def __init__(self, start, stop):
        self.Start  = start
        self.Stop   = stop

    def ToArr(self):
        return [self.Start, self.Stop]
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from AlgorithmImports import *
from Selection.OptionUniverseSelectionModel import OptionUniverseSelectionModel

class MilkTheCowOptionSelectionModel(OptionUniverseSelectionModel):
    '''Creates option chain universes that select only the two week earliest expiry call contract
    and runs a user defined optionChainSymbolSelector every day to enable choosing different option chains'''
    def __init__(self, select_option_chain_symbols, expirationRange = [7, 30]):
        super().__init__(timedelta(1), select_option_chain_symbols)
        self.expirationRange = expirationRange

    def Filter(self, filter):
        '''Defines the option chain universe filter'''
        return (filter.Strikes(-2, +2)
                      .Expiration(self.expirationRange[0], self.expirationRange[1])
                      .IncludeWeeklys()
                      .OnlyApplyFilterAtMarketOpen())
from AlgorithmImports import *

class OptionsSpreadExecution(ExecutionModel):
    '''Execution model that submits orders while the current spread is tight.
       Note this execution model will not work using Resolution.Daily since Exchange.ExchangeOpen will be false, suggested resolution is Minute
    '''

    def __init__(self, acceptingSpreadPercent=0.005):
        '''Initializes a new instance of the SpreadExecutionModel class'''
        self.targetsCollection = PortfolioTargetCollection()
        
        # Gets or sets the maximum spread compare to current price in percentage.
        self.acceptingSpreadPercent = Math.Abs(acceptingSpreadPercent)
        self.executionTimeThreshold = timedelta(minutes = 10)
        self.openExecutedOrders = {}

    def Execute(self, algorithm, targets):
        '''Executes market orders if the spread percentage to price is in desirable range.
       Args:
           algorithm: The algorithm instance
           targets: The portfolio targets'''
           
        # update the complete set of portfolio targets with the new targets
        self.UniqueTargetsByStrategy(algorithm, targets)
        self.ResetExecutedOrders(algorithm)
    
        # for performance we check count value, OrderByMarginImpact and ClearFulfilled are expensive to call
        if self.targetsCollection.Count > 0:
            for target in self.targetsCollection.OrderByMarginImpact(algorithm):
                symbol = target.Symbol
                if not self.TimeToProcess(algorithm, symbol): continue
                
                # calculate remaining quantity to be ordered
                unorderedQuantity = OrderSizing.GetUnorderedQuantity(algorithm, target)
                
                # check order entry conditions
                if unorderedQuantity != 0:
                    # get security information
                    security = algorithm.Securities[symbol]
                    # TODO: check this against spreads.!!
                    # if we are selling or buying an option then pick a favorable price
                    # if we are trying to get out of the trade then execute at market price
                    # if (target.Quantity != 0 and self.SpreadIsFavorable(security)) or target.Quantity == 0:
                    stockPrice = security.Underlying.Price
                    algorithm.MarketOrder(symbol, unorderedQuantity, tag = "Current stock price {0}".format(stockPrice))
                    self.openExecutedOrders[symbol.Value] = algorithm.Time

            self.targetsCollection.ClearFulfilled(algorithm)

    def TimeToProcess(self, algorithm, symbol):
        # if we executed the market order less than the executionTimeThreshold then skip
        key = symbol.Value
        openOrders = algorithm.Transactions.GetOpenOrders(symbol)
        if key in self.openExecutedOrders.keys():
            if (self.openExecutedOrders[key] + self.executionTimeThreshold) > algorithm.Time:
                return False
            else:
                # cancel existing open orders for symbol and try again
                algorithm.Transactions.CancelOpenOrders(key, "The order did not fill in the expected threshold.")
                return True
        else:
            # Order was never processed for this Symbol.
            return True

    def ResetExecutedOrders(self, algorithm):
        # attempt to clear targets that have been filled later
        self.targetsCollection.ClearFulfilled(algorithm)
        # reset openExecutedOrders if no targets present
        if self.targetsCollection.Count == 0:
            self.openExecutedOrders = {}

    # TODO: improve this for insight Groups so we can do spreads
    def UniqueTargetsByStrategy(self, algorithm, targets):
        # check newly added targets for similar option strategies that have not been filled
        for target in targets:
            symbol = target.Symbol
            
            if symbol.SecurityType == SecurityType.Option:
                # if an old strategy has not been filled then we are going to remove it and allow the new similar one to be tried.
                for t in self.targetsCollection:
                    if (t.Symbol.SecurityType == symbol.SecurityType and \
                        algorithm.Securities[t.Symbol].Right == algorithm.Securities[symbol].Right and \
                        t.Quantity == target.Quantity):
                        self.targetsCollection.Remove(t.Symbol)

            self.targetsCollection.Add(target)

    def SpreadIsFavorable(self, security):
        '''Determines if the spread is in desirable range.'''
        # Price has to be larger than zero to avoid zero division error, or negative price causing the spread percentage < 0 by error
        # Has to be in opening hours of exchange to avoid extreme spread in OTC period
        return security.Exchange.ExchangeOpen \
            and security.Price > 0 and security.AskPrice > 0 and security.BidPrice > 0 \
            and (security.AskPrice - security.BidPrice) / security.Price <= self.acceptingSpreadPercent
from AlgorithmImports import *
from OStrategies import *
import pickle
# Class that handles portfolio data. We have here any method that would search the portfolio for any of the contracts we need.
class Handler:

    def __init__(self, algo):
        self.algo = algo
        # Create a RollingWindow to store the last of the trades bids for selling options.
        self.lastTradeBid = 0

    # TODO: add the method that would return OptionStrategies class instances for sold calls.

    # Returns all the covered calls of the specified underlying
    # @param underlying [String]
    # @param optionType [OptionRight.Call | OptionRight.Put]
    # @param maxDays [Integer] number of days in the future that the contracts are filtered by
    def UnderlyingSoldOptions(self, underlying, optionType, maxDays = 60):
        contracts = []
        for option in self.algo.Portfolio.Values:
            security = option.Security
            if (option.Type == SecurityType.Option and
                str(security.Underlying) == underlying and
                security.Right == optionType and
                option.Quantity < 0 and
                (security.Expiry.date() - self.algo.Time.date()).days < maxDays):
                contracts.append(option)
        return contracts

    def OptionStrategies(self, underlying, types = [OptionRight.Call, OptionRight.Put]):
        allContracts = {}
        # select all the puts in our portfolio
        for option in self.algo.Portfolio.Values:
            security = option.Security
            if (option.Type == SecurityType.Option and
                security.Right in types and
                str(security.Underlying) == underlying and
                option.Quantity != 0):
                allContracts.setdefault(int(security.Expiry.timestamp()), []).append(option)

        return allContracts

    def StraddleOptions(self, underlying, expiration = [7, 30], short = True):
        allContracts = self.OptionStrategies(underlying)
        contracts = []

        for t, options in allContracts.items():
            # if we have 2 contracts and they are short
            if len(options) != 2:
                continue

            # - short = True and Quantity > 0: continue
            # - short = True and Quantity < 0: add short straddle
            # - short = False and Quantity > 0: add long straddle
            # - short = False and Quantity < 0: continue
            if short == True and sum(o.Quantity for o in options) > 0:
                continue
            if short == False and sum(o.Quantity for o in options) < 0:
                continue
                
            # pick the put and the call
            Put  = next(filter(lambda option: option.Security.Right == OptionRight.Put, options), None)
            Call = next(filter(lambda option: option.Security.Right == OptionRight.Call, options), None)

            # check expiration if it's in range.
            if expiration[1] < (Put.Security.Expiry.date() - self.algo.Time.date()).days < expiration[0]:
                continue

            # if it's a straddle (both strikes are the same)
            if Put.Security.StrikePrice == Call.Security.StrikePrice:
                contract = Straddle(Put, Call)
                contracts.append(contract)
        
        return contracts

    def SoldPuts(self, underlying, ignoreStored = False):
        # select all the calls in our portfolio
        allContracts = self.OptionStrategies(underlying, [OptionRight.Put])
        contracts = []

        for t, puts in allContracts.items():
            if len(puts) == 1 and puts[0].Quantity < 0:
                put = puts[0]
                contract = SoldPut(put)
                if not ignoreStored and contract.StrategyKey() not in self.ReadTrades("SoldPuts"): continue
                contracts.append(contract)

        return contracts

    def SoldCalls(self, underlying, ignoreStored = False):
        # select all the calls in our portfolio
        allContracts = self.OptionStrategies(underlying, [OptionRight.Call])
        contracts = []

        for t, calls in allContracts.items():
            if len(calls) == 1 and calls[0].Quantity < 0:
                call = calls[0]
                contract = SoldCall(call)
                if not ignoreStored and contract.StrategyKey() not in self.ReadTrades("SoldCalls"): continue
                contracts.append(contract)

        return contracts

    def BullPutSpreads(self, underlying, ignoreStored = False):
        # select all the puts in our portfolio
        allContracts = self.OptionStrategies(underlying, [OptionRight.Put])
        contracts = []

        # if we have 2 contracts per expiration then we have a put spread. Let's filter for bull put spreads now.
        # shortPut: higher strike than longPut // sold
        # longPut: lower strike than shortPut // bought
        for t, puts in allContracts.items():
            # if we have 2 puts with equal quantities then we have a put spread
            if len(puts) == 2 and sum(put.Quantity for put in puts) == 0:
                shortPut = next(filter(lambda put: put.Quantity < 0, puts), None)
                longPut = next(filter(lambda put: put.Quantity > 0, puts), None)
                if shortPut.Security.StrikePrice > longPut.Security.StrikePrice:
                    # TODO replace the OptionStrategies with the existing Lean code classes.
                    # OptionStrategies.BullPutSpread(canonicalOption, shortPut.Security.StrikePrice, longPut.Security.StrikePrice, shortPut.Security.Expiry)

                    contract = BullPutSpread(shortPut, longPut)
                    if not ignoreStored and contract.StrategyKey() not in self.ReadTrades("BullPutSpreads"): continue
                    contracts.append(contract)


        return contracts

    def BearCallSpreads(self, underlying, ignoreStored = False):
        # select all the calls in our portfolio
        allContracts = self.OptionStrategies(underlying, [OptionRight.Call])
        contracts = []

        # if we have 2 contracts per expiration then we have a call spread. Let's filter for bear call spreads now.
        # shortCall: lower strike than longCall // sold
        # longCall: higher strike than shortCall // bought
        for t, calls in allContracts.items():
            # if we have 2 calls with equal quantities then we have a call spread
            if len(calls) == 2 and sum(call.Quantity for call in calls) == 0:
                shortCall = next(filter(lambda call: call.Quantity < 0, calls), None)
                longCall = next(filter(lambda call: call.Quantity > 0, calls), None)
                if shortCall.Security.StrikePrice < longCall.Security.StrikePrice:
                    contract = BearCallSpread(shortCall, longCall)
                    if not ignoreStored and contract.StrategyKey() not in self.ReadTrades("BearCallSpreads"): continue
                    contracts.append(contract)

        return contracts

    def IronCondors(self, underlying, ignoreStored = False):
        allContracts = self.OptionStrategies(underlying)
        contracts = []

        # if we have 4 allContracts per expiration then we have an iron condor
        for t, c in allContracts.items():
            if len(c) == 4:
                calls = [call for call in c if call.Security.Right == OptionRight.Call]
                puts = [put for put in c if put.Security.Right == OptionRight.Put]
                # if we have 2 calls and 2 puts with equal quantities then we have a condor
                if (len(calls) == 2 and
                    sum(call.Quantity for call in calls) == 0 and
                    len(puts) == 2 and
                    sum(put.Quantity for put in puts) == 0):
                    shortCall = next(filter(lambda call: call.Quantity < 0, calls), None)
                    longCall = next(filter(lambda call: call.Quantity > 0, calls), None)
                    shortPut = next(filter(lambda put: put.Quantity < 0, puts), None)
                    longPut = next(filter(lambda put: put.Quantity > 0, puts), None)
                    contract = IronCondor(longCall, shortCall, longPut, shortPut)
                    if not ignoreStored and contract.StrategyKey() not in self.ReadTrades("IronCondors"): continue
                    contracts.append(contract)

        return contracts

    def FindStrategy(self, key, symbol, strategies = ["IronCondors", "BearCallSpreads", "BullPutSpreads"]):
        for strategy in strategies:
            contract = next(filter(lambda contract: contract.StrategyKey() == key, getattr(self, strategy)(symbol, True)))
            if contract: return contract
        return None

    # Updates the data in the ObjectStore to reflect the trades/strategies in the portfolio.
    # @param symbol [Symbol]
    # @param strategies [Array] // Eg: ["IronCondors", "BearCallSpreads"]
    def SyncStored(self, symbol, strategies):
        for strategy in strategies:
            strategyKeys = [c.StrategyKey() for c in getattr(self, strategy)(symbol, True)]
            self.update_ObjectStoreKey(strategy, strategyKeys)

    # Removes all keys from the object store thus clearing all data.
    def clear_ObjectStore(self):
        keys = [str(j).split(',')[0][1:] for _, j in enumerate(self.algo.ObjectStore.GetEnumerator())]
        for key in keys:
            self.algo.ObjectStore.Delete(key)

    # Updates the object store key with the new value without checking for the existing data.
    # @param key [String]
    # @param value [Array]
    def update_ObjectStoreKey(self, key, value):
        self.algo.ObjectStore.SaveBytes(str(key), pickle.dumps(value))

    # Add trades to the object store like the following params
    # @param key [String] // IronCondors
    # @param value [OptionStrategy] // Eg: IronCondor
    def AddTrade(self, key, value):
        jsonObj = self.ReadTrades(key)
        if value not in jsonObj: jsonObj.append(value)
        self.algo.ObjectStore.SaveBytes(str(key), pickle.dumps(jsonObj))

    # Remove trades from the object store by these params
    # @param key [String] // IronCondors
    # @param value [OptionStrategy] // Eg: IronCondor
    def RemoveTrade(self, key, value):
        jsonObj = self.ReadTrades(key)
        jsonObj.remove(value)
        self.algo.ObjectStore.SaveBytes(str(key), pickle.dumps(jsonObj))

    def ReadTrades(self, key):
        jsonObj = []
        if self.algo.ObjectStore.ContainsKey(key):
            deserialized = bytes(self.algo.ObjectStore.ReadBytes(key))
            jsonObj = (pickle.loads(deserialized))
            if jsonObj is None: jsonObj = []

        jsonObj = list(set(jsonObj)) # there should be unique values in our array

        return jsonObj

    def PrintPortfolio(self):
        # self.Debug("Securities:")
        # self.Securities
        #   contains Securities that you subscribe to but it does not mean that you are invested.
        #   calling self.AddOptionContract will add the option to self.Securities
        for kvp in self.Securities:
            symbol = kvp.Key # key of the array
            security = kvp.Value # value of the array (these are not attributes)
            holdings = security.Holdings
            self.Debug(str(security.Symbol))
            # self.Debug(str(security.Underlying))
            # self.Debug(str(security.Holdings))

        # self.Debug("Portfolio:")
        # self.Portfolio
        #   contains the Security objects that you are invested in.
        for kvp in self.Portfolio:
            symbol = kvp.Key
            holding = kvp.Value
            holdings = holding.Quantity
            # self.Debug(str(holding.Holdings))
            
#region imports
from AlgorithmImports import *
#endregion

# TODO update this to use the LEAN versions of the strategies and expand on them. Maybe we don't even have to do that. OPEN and CLOSE are not needed!

class BaseOptionStrategy(QCAlgorithm):
    name = ""
    optionLegs          = []
    securityOptionLegs  = []
    expiryList          = []

    def __init__(self, name, optionLegs):
        self.name = name
        self.optionLegs = optionLegs
        
    # Method that returns the number of days this strategy expires in. If we have multiple explirations we return an array.
    def ExpiresIn(self, algo):
        expirations = list(set(self.ExpiryList()))
        if len(expirations) > 1:
            return [(ex - algo.Time.date()).days for ex in expirations]
        else:
            return (expirations[0] - algo.Time.date()).days
    
    def StrategyKey(self):
        strikesStr = "_".join([str(x.StrikePrice if self.IsHolding() else x.Strike) for x in self.SecurityOptionLegs()])
        return "{}_{}_{}".format(self.NameKey(), str(self.Expiration()), strikesStr)

    def UnrealizedProfit(self):
        if not self.IsHolding(): raise Exception("The {} strategy does not hold OptionHolding instances.".format(self.name))

        return sum([c.UnrealizedProfitPercent for c in self.optionLegs]) / len(self.optionLegs) * 100

    # Checks if the expiration is the same
    def SameExpiration(self):
        expirations = list(set(self.ExpiryList()))
        if len(expirations) > 1:
            return False
        else:
            return True

    def Open(self, algo, quantity, log = True):
        raise Exception("This method is not implemented")
    
    def Close(self, algo):
        algo.portfolio.RemoveTrade("{}s".format(self.NameKey()), self.StrategyKey())
        for contract in self.optionLegs:
            algo.Log("Liquidating {}".format(contract.Symbol))
            algo.Liquidate(contract.Symbol, tag = self.StrategyKey())
    
    def ExpiryList(self):
        if self.IsContract():
            exList = [x.Date.date() for x in self.SecurityOptionLegs()]
        else:
            exList = [x.Expiry.date() for x in self.SecurityOptionLegs()]
        self.expiryList = self.expiryList or exList
        return self.expiryList

    def Expiration(self):
        return self.ExpiryList()[0]

    def AskPrice(self, algo):
        if self.IsContract():
            prices = [algo.Securities[o.Value].AskPrice for o in self.optionLegs]
        else:
            prices = [o.AskPrice for o in self.SecurityOptionLegs()]
        return sum(prices)

    def SecurityOptionLegs(self):
        if self.IsHolding():
            self.securityOptionLegs = self.securityOptionLegs or [x.Security for x in self.optionLegs]
        #  is this a contract Symbol?
        elif self.IsContract():
            self.securityOptionLegs = self.securityOptionLegs or [x.ID for x in self.optionLegs]
        else:
            self.securityOptionLegs = self.securityOptionLegs or self.optionLegs
        
        return self.securityOptionLegs

    def IsContract(self):
        return hasattr(self.optionLegs[0], 'ID')

    def IsHolding(self):
        return isinstance(self.optionLegs[0], OptionHolding)

    # TODO simplify this method to use SecurityOptionLegs
    def Underlying(self):
        if self.IsHolding():
            return option.Security.Underlying.Symbol
        else:
            return option.UnderlyingSymbol
    
    def NameKey(self):
        return "".join(self.name.split())

class Straddle(BaseOptionStrategy):
    Put = None
    Call = None

    def __init__(self, Put, Call):
        BaseOptionStrategy.__init__(self, "Straddle", [Put, Call])
        self.Call = Call
        self.Put = Put

        self.__StrikeCheck()
        
        if self.SameExpiration() == False:
            raise Exception("The expiration should be the same for all options.")

    def Strike(self):
        if self.IsHolding():
            callStrike = self.Call.Security.StrikePrice
        else:
            callStrike = self.Call.Strike
        
        return callStrike

    def __StrikeCheck(self):
        # is this an option holding?
        if self.IsHolding():
            callStrike = self.Call.Security.StrikePrice
            putStrike = self.Put.Security.StrikePrice
        #  is this a contract Symbol?
        elif self.IsContract():
            callStrike = self.Call.ID.StrikePrice
            putStrike = self.Put.ID.StrikePrice
        # is this a OptionChain Symbol?
        else:
            callStrike = self.Call.Strike
            putStrike = self.Put.Strike
            
        if callStrike != putStrike:
            raise Exception("The Call strike has to be equal to the Put strike.")

# TODO fix this CoveredCall (SoldCall) strategy here so it works. Change the name also as it's not a CoveredCall that implies the buying of the stock.

class SoldPut(BaseOptionStrategy):
    shortPut = None

    def __init__(self, shortPut):
        BaseOptionStrategy.__init__(self, "Sold Put", [shortPut])
        self.shortPut = shortPut

    # TODO open does not make sense?!!! maybe consider with insights to add??

class SoldCall(BaseOptionStrategy):
    shortCall = None

    def __init__(self, shortCall):
        BaseOptionStrategy.__init__(self, "Sold Call", [shortCall])
        self.shortCall = shortCall

    # TODO open does not make sense?!!! maybe consider with insights to add??

class BullPutSpread(BaseOptionStrategy):
    shortPut = None
    longPut = None

    def __init__(self, shortPut, longPut):
        BaseOptionStrategy.__init__(self, "Bull Put Spread", [shortPut, longPut])
        self.longPut = longPut
        self.shortPut = shortPut

        self.__StrikeCheck()
        
        if self.SameExpiration() == False:
            raise Exception("The expiration should be the same for all options.")

    def Open(self, algo, quantity, log = True):
        if log: algo.portfolio.AddTrade("{}s".format(self.NameKey()), self.StrategyKey())
        algo.Log("Bull put Long Call {} and Short Call {}".format(self.longPut.Symbol, self.shortPut.Symbol))
        algo.Buy(self.longPut.Symbol, quantity)
        algo.Sell(self.shortPut.Symbol, quantity)
    
    def __StrikeCheck(self):
        if self.IsHolding():
            longStrike = self.longPut.Security.StrikePrice
            shortStrike = self.shortPut.Security.StrikePrice
        else:
            longStrike = self.longPut.Strike
            shortStrike = self.shortPut.Strike
            
        if longStrike > shortStrike:
            raise Exception("The longPut strike has to be lower than the shortPut strike.")

class BearCallSpread(BaseOptionStrategy):
    shortCall = None
    longCall = None
    
    def __init__(self, shortCall, longCall):
        BaseOptionStrategy.__init__(self, "Bear Call Spread", [shortCall, longCall])
        self.longCall = longCall
        self.shortCall = shortCall

        self.__StrikeCheck()
        
        if self.SameExpiration() == False:
            raise Exception("The expiration should be the same for all options.")

    def Open(self, algo, quantity, log = True):
        if log: algo.portfolio.AddTrade("{}s".format(self.NameKey()), self.StrategyKey())
        algo.Log("Bear call Long Call {} and Short Call {}".format(self.longCall.Symbol, self.shortCall.Symbol))
        algo.Buy(self.longCall.Symbol, quantity)
        algo.Sell(self.shortCall.Symbol, quantity)

    def __StrikeCheck(self):
        if self.IsHolding():
            longStrike = self.longCall.Security.StrikePrice
            shortStrike = self.shortCall.Security.StrikePrice
        else:
            longStrike = self.longCall.Strike
            shortStrike = self.shortCall.Strike
            
        if longStrike < shortStrike:
            raise Exception("The longCall strike has to be higher than the shortCall strike.")

# An iron condor is an options strategy consisting of two puts (one long and one short) and two calls (one long and one short), and four strike prices, all with the same expiration date. 
# The iron condor earns the maximum profit when the underlying asset closes between the middle strike prices at expiration.
class IronCondor(BaseOptionStrategy):
    bullPutSpread = None
    bearCallSpread = None

    def __init__(self, longCall, shortCall, longPut, shortPut):
        BaseOptionStrategy.__init__(self, "Iron Condor", [longCall, shortCall, longPut, shortPut])

        self.bullPutSpread = BullPutSpread(shortPut, longPut)
        self.bearCallSpread = BearCallSpread(shortCall, longCall)
    
    def Open(self, algo, quantity, log = True):
        if log: algo.portfolio.AddTrade("{}s".format(self.NameKey()), self.StrategyKey())
        self.bullPutSpread.Open(algo, quantity, False)
        self.bearCallSpread.Open(algo, quantity, False)
#region imports
from AlgorithmImports import *
from .Handler import Handler
from .OStrategies import *
#endregion


# Your New Python File
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from AlgorithmImports import *
from Selection.OptionUniverseSelectionModel import OptionUniverseSelectionModel

class SafeCallOptionSelectionModel(OptionUniverseSelectionModel):
    '''Creates option chain universes that select only the two week earliest expiry call contract
    and runs a user defined optionChainSymbolSelector every day to enable choosing different option chains'''
    def __init__(self, select_option_chain_symbols, targetExpiration = 14):
        super().__init__(timedelta(1), select_option_chain_symbols)
        self.targetExpiration = targetExpiration

    def Filter(self, filter):
        '''Defines the option chain universe filter'''
        return (filter.Strikes(+40, +70)
                      .Expiration(self.targetExpiration, self.targetExpiration * 2)
                      .IncludeWeeklys()
                      .OnlyApplyFilterAtMarketOpen())
#region imports
from AlgorithmImports import *
from QuantConnect.Logging import *
from MarketHours import MarketHours
from PortfolioHandler import Handler
#endregion

class SafeSoldCallAlphaModel(AlphaModel):
    options = {}
    algorithm = None
    sliceData = None

    def __init__(self, algorithm, ticker, option, targetExpiration = 14):
        self.ticker = ticker
        self.option = option
        self.tolerance = 0.1
        self.algorithm = algorithm
        self.targetExpiration = targetExpiration
        self.symbol = algorithm.AddEquity(self.ticker)
        self.marketHours = MarketHours(algorithm, self.ticker)
        self.portfolio = Handler(self.algorithm)

        # Set up default Indicators, these indicators are defined on the Value property of incoming data (except ATR and AROON which use the full TradeBar object)
        self.indicators = {
            # 'BB' : algorithm.BB(self.ticker, 20, 1, MovingAverageType.Simple, Resolution.Hour),
            'RSI' : algorithm.RSI(self.ticker, 14, MovingAverageType.Simple, Resolution.Hour),
            # 'EMA' : algorithm.EMA(self.ticker, 14, Resolution.Hour),
            # 'SMA' : algorithm.SMA(self.ticker, 14, Resolution.Hour),
            'MACD' : algorithm.MACD(self.ticker, 12, 26, 9, MovingAverageType.Exponential, Resolution.Hour),
            'MOM' : algorithm.MOM(self.ticker, 20, Resolution.Hour),
            # 'MOMP' : algorithm.MOMP(self.ticker, 20, Resolution.Hour),
            # 'STD' : algorithm.STD(self.ticker, 20, Resolution.Hour),
            # by default if the symbol is a tradebar type then it will be the min of the low property
            # 'MIN' : algorithm.MIN(self.ticker, 14, Resolution.Hour),
            # by default if the symbol is a tradebar type then it will be the max of the high property
            # 'MAX' : algorithm.MAX(self.ticker, 14, Resolution.Hour),
            'ATR' : algorithm.ATR(self.ticker, 14, MovingAverageType.Simple, Resolution.Hour),
            # 'AROON' : algorithm.AROON(self.ticker, 20, Resolution.Hour)
        }
        self.algorithm.benchmark.AddIndicators(self.indicators)

        # TODO: - draw a line on the trade plot that shows the constant strike price and try and make it not touch the stock price.
        #       - use the ATR ()


    def Update(self, algorithm, data):
        if algorithm.IsWarmingUp: return []

        if self.ticker not in data.Keys: return []
        
        self.algorithm.benchmark.PrintBenchmark()

        weekday = self.algorithm.Time.isoweekday()
        insights = []
        # IMPORTANT!!: In order to fix the cancelled closing order instance only check to close an order after 12. The reason is the market orders that happen
        #              before market open are converted to MarketOnOpen orders and it seems this does not get resolved.
        if self.algorithm.Time.hour > self.marketHours.get_CurrentOpen().hour + 4:
            insights.extend(self.MonitorCoveredCall(data))
        
        if self.algorithm.Time.hour > self.marketHours.get_CurrentOpen().hour + 4:
            insights.extend(self.MonitorHedgePut(data))

        if weekday == DayOfWeek.Thursday or weekday == DayOfWeek.Tuesday:
            if 11 > self.algorithm.Time.hour >= 10 and (self.algorithm.Time.minute == 15 or self.algorithm.Time.minute == 45):
                insights.extend(self.Scanner(data))

        return insights

    def MonitorHedgePut(self, data):
        insights = []
        
        stockPrice = self.algorithm.Securities[self.ticker].Price
        for eput in self.portfolio.UnderlyingSoldOptions(self.ticker, OptionRight.Put):
            close = False
            expiresIn = self.__ExpiresIn(eput.Security)
            
            if eput.UnrealizedProfitPercent * 100 > 90:
                close = True
            # if already invested in this position then check if it expires today
            elif expiresIn == 0 and self.algorithm.Time.hour == self.marketHours.get_CurrentClose().hour - 1:
                close = True
            # elif stockPrice < eput.Security.StrikePrice:
            #     close = True
            
            if close:
                insights.append(
                    Insight.Price(eput.Symbol, Resolution.Minute, 1, InsightDirection.Flat)
                )
        return insights

    def MonitorCoveredCall(self, data):
        insights = []
        
        # hedged = self.__IsHedged()
        stockPrice = self.algorithm.Securities[self.ticker].Price
        for ecall in self.portfolio.UnderlyingSoldOptions(self.ticker, OptionRight.Call):
            close = False
            hedge = False
            expiresIn = self.__ExpiresIn(ecall.Security)
            
            if ecall.UnrealizedProfitPercent * 100 > 95:
                close = True
            # elif stockPrice >= ecall.Security.StrikePrice / 1.1:
            #     close = True
            #     hedge = True
            elif stockPrice > ecall.Security.StrikePrice and self.algorithm.Time.hour >= 12 and expiresIn < round(self.targetExpiration * 0.8):
                close = True
                # hedge = True
                # if already invested in this position then check if it expires today
            elif expiresIn == 0 and self.algorithm.Time.hour > 15:
                close = True
            elif self.indicators['MACD'].Signal.Current.Value >= 10 and self.indicators['RSI'].Current.Value >= 70 and stockPrice >= ecall.Security.StrikePrice / 1.5:
                close = True
            # elif (self.__SignalDeltaPercent() < -self.tolerance and self.indicators['RSI'].Current.Value > 70):
            #     close = True
            #     hedge = True

            # if hedge and not hedged:
            #     hedgeContract = self.__FindPut(data)
            #     insights.append(
            #         Insight.Price(hedgeContract.Symbol, Resolution.Minute, 1, InsightDirection.Down)
            #     )

            if close:
                insights.append(
                    Insight.Price(ecall.Symbol, Resolution.Minute, 1, InsightDirection.Flat)
                )
        return insights

    def Scanner(self, data):
        insights = []

        ## Buying conditions
        # if self.indicators['RSI'].Current.Value < 40: return insights    
        # IF RSI is > 40  -- NO
        #     | YES

        if self.indicators['MACD'].Signal.Current.Value >= 10 and self.indicators['RSI'].Current.Value >= 70:
            return insights

        # 0 positions covered calls or hedge -- NO
        #     | YES
        if len(self.portfolio.UnderlyingSoldOptions(self.ticker, OptionRight.Call)) > 0 or \
            self.__IsHedged():
          return insights

        call = self.__FindCall(data)

        if call is not None:
            insights.append(Insight.Price(
                call.Symbol,
                Resolution.Minute,
                1,
                InsightDirection.Down
            ))
        return insights

    def __FindPut(self, data, delta = -0.6):
        chain = data.OptionChains.GetValue(self.option)

        if not chain: return None
        # The way we are defining expiration here is by taking an absolute value. So it might just be __ExpiresIn(x) > expiration
        contracts = [x for x in chain if self.__ExpiresIn(x) >= self.targetExpiration and x.Right == OptionRight.Put]

        # # only tradable contracts
        # # !!IMPORTANT!!: to escape the error `Backtest Handled Error: The security with symbol 'SPY 220216P00425000' is marked as non-tradable.`
        contracts = [x for x in contracts if self.algorithm.Securities[x.Symbol].IsTradable]
        
        if not contracts: return None
        
        return min(contracts, key=lambda x: abs(x.Greeks.Delta - delta))        

    def __FindCall(self, data, delta = 0.01):
        chain = data.OptionChains.GetValue(self.option)

        if not chain: return None
        # The way we are defining expiration here is by taking an absolute value. So it might just be __ExpiresIn(x) > expiration
        contracts = [x for x in chain if self.__ExpiresIn(x) >= self.targetExpiration and x.Right == OptionRight.Call]

        # # only tradable contracts
        # # !!IMPORTANT!!: to escape the error `Backtest Handled Error: The security with symbol 'SPY 220216P00425000' is marked as non-tradable.`
        contracts = [x for x in contracts if self.algorithm.Securities[x.Symbol].IsTradable]
        
        if not contracts: return None
        
        return min(contracts, key=lambda x: abs(x.Greeks.Delta - delta))       

    def __IsHedged(self):
        return len(self.portfolio.UnderlyingSoldOptions(self.ticker, OptionRight.Put)) > 0

    # Method that returns a boolean if the security expires in the given days
    # @param security [Security] the option contract
    def __ExpiresIn(self, security):
        return (security.Expiry.date() - self.algorithm.Time.date()).days

    def __SignalDeltaPercent(self):
        return (self.indicators['MACD'].Current.Value - self.indicators['MACD'].Signal.Current.Value) / self.indicators['MACD'].Fast.Current.Value
#region imports
from AlgorithmImports import *
from Risk.MaximumDrawdownPercentPerSecurity import MaximumDrawdownPercentPerSecurity
import numpy as np
from PortfolioHandler import Handler
#endregion

class TrailingStopRisk(RiskManagementModel):
    '''Provides an implementation of IRiskManagementModel that limits the drawdown per holding to the specified percentage'''

    def __init__(self, maximumDrawdownPercent = 5, profitTarget = None, ticker = None, strategies = [], algo = None):
        '''Initializes a new instance of the MaximumDrawdownPercentPerSecurity class
        Args:
            maximumDrawdownPercent: The maximum percentage drawdown allowed for any single security holding'''
        self.maximumDrawdownPercent = -abs(maximumDrawdownPercent)
        self.profitTarget = profitTarget
        self.strategies = strategies
        self.algo = algo
        self.symbol = Symbol.Create(ticker, SecurityType.Equity, Market.USA)    
        self.assetBestPnl = {}

    def ManageRisk(self, algorithm, targets):
        '''Manages the algorithm's risk at each time step
        Args:
            algorithm: The algorithm instance
            targets: The current portfolio targets to be assessed for risk'''
        targets = []
        # portfolio = self.algo.portfolio
        portfolio = Handler(algorithm)
        # TODO: this works but it's clear it does not get the ObjectStore from our main algo?!! WHY?
        # TODO: fix this code to work with any strategy including SoldCalls. It might actually work!
        portfolio.SyncStored(self.symbol, self.strategies)

        for strategy in self.strategies:
            for contract in getattr(portfolio, strategy)(self.symbol):
                key = contract.StrategyKey()
                if key not in self.assetBestPnl.keys():
                    self.assetBestPnl[key] = contract.UnrealizedProfit()
                self.assetBestPnl[key] = np.maximum(self.assetBestPnl[key], contract.UnrealizedProfit())
                
                pnl = contract.UnrealizedProfit() - self.assetBestPnl[key]
                # To handle profitTarget like 50% from when bought think of checking for
                if self.profitTarget is not None:
                    if self.assetBestPnl[key] >= self.profitTarget and pnl < self.maximumDrawdownPercent:
                        for c in contract.optionLegs:
                            targets.append(PortfolioTarget(c.Symbol, InsightDirection.Flat))
                else:
                    if pnl < self.maximumDrawdownPercent:
                        for c in contract.optionLegs:
                            targets.append(PortfolioTarget(c.Symbol, InsightDirection.Flat))

        return targets

# region imports
from AlgorithmImports import *

# from Alphas.ConstantAlphaModel import ConstantAlphaModel
# from Selection.OptionUniverseSelectionModel import OptionUniverseSelectionModel
# from Execution.ImmediateExecutionModel import ImmediateExecutionModel
from TrailingStopRisk import TrailingStopRisk
from Risk.NullRiskManagementModel import NullRiskManagementModel
from Benchmark import Benchmark
# from UniverseSelection import OptionUniverseSelectionModel2
from OptionsSpreadExecution import OptionsSpreadExecution
from SafeSoldCallAlphaModel import SafeSoldCallAlphaModel
from SafeCallOptionSelectionModel import SafeCallOptionSelectionModel

from MilkTheCowAlphaModel import MilkTheCowAlphaModel
from MilkTheCowOptionSelectionModel import MilkTheCowOptionSelectionModel
# endregion

class AddAlphaModelAlgorithm(QCAlgorithm):
    def Initialize(self):
        ''' Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.'''

        self.SetStartDate(2020, 1, 1)  # Set Start Date
        self.SetEndDate(2020, 12, 1)    # Set End Date
        self.SetCash(200000)           # Set Strategy Cash
        # Set settings and account setup
        self.UniverseSettings.Resolution = Resolution.Minute
        self.UniverseSettings.FillForward = False

        self.SetSecurityInitializer(self.CustomSecurityInitializer)
        self.SetBrokerageModel(BrokerageName.InteractiveBrokersBrokerage, AccountType.Margin) # Set InteractiveBrokers Brokerage model


        # Main variables
        self.ticker = self.GetParameter("ticker")
        self.benchmark = Benchmark(self, self.ticker)         
        self.option = Symbol.Create(self.ticker, SecurityType.Option, Market.USA, f"?{self.ticker}")
        equity = Symbol.Create(self.ticker, SecurityType.Equity, Market.USA)    
        
        # Milk the cow models
        # self.SetUniverseSelection(MilkTheCowOptionSelectionModel(self.SelectOptionChainSymbols, expirationRange=[7, 30])) # Options for short Straddle
        # self.SetUniverseSelection(MilkTheCowOptionSelectionModel(self.SelectOptionChainSymbols, expirationRange=[365, 395])) # Options for long Straddle
        self.SetAlpha(MilkTheCowAlphaModel(self, self.ticker, self.option))
        self.SetExecution(OptionsSpreadExecution(acceptingSpreadPercent=0.050))
        # self.SetRiskManagement(TrailingStopRisk(algo = self, maximumDrawdownPercent = 20, profitTarget = 90, ticker = self.ticker, strategies = ["SoldCalls", "SoldPuts"]))
        
        self.SetPortfolioConstruction(SingleSharePortfolioConstructionModel())
        # self.SetExecution(ImmediateExecutionModel())
        self.SetRiskManagement(NullRiskManagementModel())
        
        # Safe call models
        # self.SetUniverseSelection(SafeCallOptionSelectionModel(self.SelectOptionChainSymbols, targetExpiration=14))
        # self.SetAlpha(SafeSoldCallAlphaModel(self, self.ticker, self.option, targetExpiration=14))
        # self.SetExecution(OptionsSpreadExecution(acceptingSpreadPercent=0.050))
        # self.SetRiskManagement(TrailingStopRisk(algo = self, maximumDrawdownPercent = 20, profitTarget = 90, ticker = self.ticker, strategies = ["SoldCalls", "SoldPuts"]))


        # OTHER models from learning
        # self.SetUniverseSelection(OptionUniverseSelectionModel2(timedelta(1), self.SelectOptionChainSymbols))
        # self.SetAlpha(ConstantOptionContractAlphaModel(InsightType.Price, InsightDirection.Up, timedelta(hours = 0.5)))
        # self.SetExecution(SpreadExecutionModel())
        # self.SetExecution(MarketOrderExecutionModel())
    
        self.SetWarmUp(TimeSpan.FromDays(30))

    def SelectOptionChainSymbols(self, utcTime):
        return [ self.option ]

    def OnOrderEvent(self, orderEvent):
        if orderEvent.Status == OrderStatus.Filled:
            order = self.Transactions.GetOrderById(orderEvent.OrderId)
            self.benchmark.PrintTrade(order)

    # https://www.quantconnect.com/forum/discussion/13199/greeks-with-optionchainprovider/p1/comment-38906
    # def OptionContractSecurityInitializer(self, security):
    #     if security.Type == SecurityType.Equity:
    #         symbol = security.Symbol
    #         security.VolatilityModel = StandardDeviationOfReturnsVolatilityModel(30, Resolution.Daily)
    #         for index, row in self.History(symbol, 30, Resolution.Daily).iterrows():
    #             security.SetMarketPrice(IndicatorDataPoint(index[1], row.close))
                
    #     if security.Type == SecurityType.Option:
    #         security.PriceModel = OptionPriceModels.CrankNicolsonFD()

    # https://www.quantconnect.com/forum/discussion/10236/options-delta-always-zero/p1/comment-29181
    def CustomSecurityInitializer(self, security):
        '''Initialize the security with raw prices'''
        security.SetDataNormalizationMode(DataNormalizationMode.Raw)
        security.SetMarketPrice(self.GetLastKnownPrice(security))

        if security.Type == SecurityType.Equity:
            security.VolatilityModel = StandardDeviationOfReturnsVolatilityModel(30)
            history = self.History(security.Symbol, 31, Resolution.Daily)
            if history.empty or 'close' not in history.columns:
                return
            
            for time, row in history.loc[security.Symbol].iterrows():
                trade_bar = TradeBar(time, security.Symbol, row.open, row.high, row.low, row.close, row.volume)    
                security.VolatilityModel.Update(security, trade_bar)
        
        elif security.Type == SecurityType.Option:    
            security.PriceModel = OptionPriceModels.CrankNicolsonFD() #  BlackScholes()

class SingleSharePortfolioConstructionModel(PortfolioConstructionModel):
    '''Portfolio construction model that sets target quantities to 1 for up insights and -1 for down insights'''
    def CreateTargets(self, algorithm, insights):
        targets = []
        for insight in insights:
            targets.append(PortfolioTarget(insight.Symbol, insight.Direction * self.TargetQuantity(insight.Symbol)))
        return targets

    # Method that defines how many option contracts to sell or buy by symbol. 
    # Here we can expand this to be variable by Symbol or defined by a parameter or by portfolio alocation based on margin available.
    def TargetQuantity(self, symbol):
        return 1