Overall Statistics |
Total Trades 95 Average Win 2.60% Average Loss -0.81% Compounding Annual Return 4.754% Drawdown 13.700% Expectancy 0.579 Net Profit 25.932% Sharpe Ratio 0.499 Probabilistic Sharpe Ratio 10.817% Loss Rate 62% Win Rate 38% Profit-Loss Ratio 3.21 Alpha 0.045 Beta -0.027 Annual Standard Deviation 0.086 Annual Variance 0.007 Information Ratio -0.227 Tracking Error 0.15 Treynor Ratio -1.572 Total Fees $344.63 |
from datetime import timedelta class FrameworkAlgorithm(QCAlgorithm): def Initialize(self): self.SetStartDate(2014, 1, 15) self.SetEndDate(2019, 1, 1) self.SetCash(100000) symbols = [Symbol.Create("SPY", SecurityType.Equity, Market.USA), Symbol.Create("BND", SecurityType.Equity, Market.USA)] self.UniverseSettings.Resolution = Resolution.Daily self.SetUniverseSelection(ManualUniverseSelectionModel(symbols)) self.SetAlpha(MOMAlphaModel()) self.SetPortfolioConstruction(EqualWeightingPortfolioConstructionModel()) self.SetRiskManagement(MaximumDrawdownPercentPerSecurity(0.02)) self.SetExecution(ImmediateExecutionModel()) class MOMAlphaModel(AlphaModel): def __init__(self): self.mom = [] self.month = -1 def OnSecuritiesChanged(self, algorithm, changes): for security in changes.AddedSecurities: symbol = security.Symbol self.mom.append({"symbol":symbol, "indicator":algorithm.MOM(symbol, 14, Resolution.Daily)}) def Update(self, algorithm, data): if self.month == algorithm.Time.month: return [] self.month = algorithm.Time.month ordered = sorted(self.mom, key=lambda kv: kv["indicator"].Current.Value, reverse=True) return Insight.Group([Insight.Price(ordered[0]['symbol'], timedelta(22), InsightDirection.Up), Insight.Price(ordered[1]['symbol'], timedelta(22), InsightDirection.Flat) ])