Overall Statistics |
Total Trades 9444 Average Win 0.11% Average Loss -0.04% Compounding Annual Return 1.677% Drawdown 39.200% Expectancy 0.127 Net Profit 19.740% Sharpe Ratio 0.166 Loss Rate 69% Win Rate 31% Profit-Loss Ratio 2.59 Alpha 0.02 Beta 0.099 Annual Standard Deviation 0.142 Annual Variance 0.02 Information Ratio -0.044 Tracking Error 0.222 Treynor Ratio 0.237 Total Fees $30888.70 |
from clr import AddReference AddReference("System.Core") AddReference("System.Collections") AddReference("QuantConnect.Common") AddReference("QuantConnect.Algorithm") import statistics from datetime import datetime from System.Collections.Generic import List class ShortTimeReversal(QCAlgorithm): def Initialize(self): self.SetStartDate(2002, 1, 3) self.SetEndDate(2016, 12, 1) self.SetCash(1000000) self.UniverseSettings.Resolution = Resolution.Daily self.AddUniverse(self.CoarseSelectionFunction) self._numberOfSymbols = 100 self._numberOfTradings = 10 self._LastMonth = -1 self._LastDay = -1 self._stocks = [] self._values = {} def CoarseSelectionFunction(self, coarse): sortedByDollarVolume = sorted(coarse, key=lambda x: x.DollarVolume, reverse=True) top100 = sortedByDollarVolume[:self._numberOfSymbols] list = List[Symbol]() for x in top100: list.Add(x.Symbol) #self.Log("This is symbol: {0}".format(x.Symbol)) return list def OnData(self, data): if not self._values: self._stocks = [] self.uni_symbol = None symbols = self.UniverseManager.Keys for i in symbols: if str(i.Value) == "QC-UNIVERSE-COARSE-USA": self.uni_symbol = i for i in self.UniverseManager[self.uni_symbol].Members: self._stocks.append(i.Value.Symbol) #self.Log("This is sym: {0}".format(i.Value.Symbol)) self._values[i.Value.Symbol] = self.Securities[i.Value.Symbol].Price self._LastDay = self.Time.date() self._LastMonth = self.Time.month else: if self.Time.month != self._LastMonth: self._LastMonth = self.Time.month returns = {} for stock in self._stocks: newPrice = self.Securities[stock].Price returns[stock] = newPrice/self._values[stock] newArr = [(v,k) for k,v in returns.items()] newArr.sort() for ret, stock in newArr[self._numberOfTradings:-self._numberOfTradings]: self.SetHoldings(stock, 0) for ret, stock in newArr[0:self._numberOfTradings]: self.SetHoldings(stock, 0.5/self._numberOfTradings) for ret, stock in newArr[-self._numberOfTradings:]: self.SetHoldings(stock, -0.5/self._numberOfTradings) self._LastDay = self.Time.date() return delta = self.Time.date() - self._LastDay if delta.days >= 7: for stock in self._stocks: if self.Portfolio[stock].IsLong: self.SetHoldings(stock, 0.5/self._numberOfTradings) if self.Portfolio[stock].IsShort: self.SetHoldings(stock, -0.5/self._numberOfTradings) self._LastDay = self.Time.date()