Overall Statistics |
Total Orders 29865 Average Win 11.95% Average Loss -2.45% Compounding Annual Return 104.858% Drawdown 29.900% Expectancy 1.485 Start Equity 100000.00 End Equity 1768136.55 Net Profit 1668.137% Sharpe Ratio 1.185 Sortino Ratio 2.377 Probabilistic Sharpe Ratio 18.327% Loss Rate 58% Win Rate 42% Profit-Loss Ratio 4.89 Alpha 0.918 Beta 0.198 Annual Standard Deviation 0.788 Annual Variance 0.621 Information Ratio 1.065 Tracking Error 0.802 Treynor Ratio 4.711 Total Fees $0.00 Estimated Strategy Capacity $300000.00 Lowest Capacity Asset LTCUSD 2XR Portfolio Turnover 14.95% |
from AlgorithmImports import * class TechnicalIndicatorsAlgorithm(QCAlgorithm): def Initialize(self): self.SetStartDate(2020, 1, 1) # Set Start Date self.SetEndDate(2024, 1, 1) # Set End Date self.SetCash(100000) # Set Strategy Cash # Add the cryptocurrency pairs self.symbols = [ self.AddCrypto("BTCUSD", Resolution.HOUR).Symbol, self.AddCrypto("ETHUSD", Resolution.HOUR).Symbol, self.AddCrypto("LTCUSD", Resolution.HOUR).Symbol, self.AddCrypto("XRPUSD", Resolution.HOUR).Symbol ] self.indicators = {} for symbol in self.symbols: self.indicators[symbol] = { "hammer": self.CandlestickPatterns.Hammer(symbol), "hanging_man": self.CandlestickPatterns.HangingMan(symbol), "doji": self.CandlestickPatterns.Doji(symbol), "spinning_top": self.CandlestickPatterns.SpinningTop(symbol), "engulfing": self.CandlestickPatterns.Engulfing(symbol), "rsi": self.RSI(symbol, 14, MovingAverageType.Wilders, Resolution.HOUR), "sma10": self.SMA(symbol, 10, Resolution.HOUR), "sma05": self.SMA(symbol, 5, Resolution.HOUR), "ema20": self.EMA(symbol, 20, Resolution.HOUR), "sma30": self.SMA(symbol, 30, Resolution.HOUR), "sma50": self.SMA(symbol, 50, Resolution.HOUR), "sma200": self.SMA(symbol, 200, Resolution.HOUR), "sma600": self.SMA(symbol, 600, Resolution.HOUR), "sma40": self.SMA(symbol, 40, Resolution.HOUR), "sma120": self.SMA(symbol, 120, Resolution.HOUR), "ema05": self.EMA(symbol, 5, Resolution.HOUR), "ema10": self.EMA(symbol, 10, Resolution.HOUR), "ema30": self.EMA(symbol, 30, Resolution.HOUR), "ema65": self.EMA(symbol, 65, Resolution.HOUR), "ema100": self.EMA(symbol, 100, Resolution.HOUR), "ema150": self.EMA(symbol, 150, Resolution.HOUR), "ema500": self.EMA(symbol, 500, Resolution.HOUR), "ema600": self.EMA(symbol, 600, Resolution.HOUR), "entry_price": None, "stop_price": None } def OnData(self, data): for symbol in self.symbols: if not data.ContainsKey(symbol): continue price = data[symbol].Close indicators = self.indicators[symbol] # Buy condition if (indicators["rsi"].Current.Value > 40) and (indicators["ema10"].Current.Value > indicators["ema20"].Current.Value > indicators["ema65"].Current.Value > indicators["ema150"].Current.Value): if not self.Portfolio[symbol].Invested: self.SetHoldings(symbol, 1) indicators["entry_price"] = price indicators["stop_price"] = price * 0.90 # Sell condition elif indicators["rsi"].Current.Value < 50 and ((indicators["ema10"].Current.Value < indicators["ema65"].Current.Value) or (indicators["ema20"].Current.Value < indicators["ema65"].Current.Value)): if self.Portfolio[symbol].Invested: self.Liquidate(symbol) indicators["entry_price"] = None indicators["stop_price"] = None # Stop-loss condition #if self.Portfolio[symbol].Invested and indicators["entry_price"] is not None: # if price < indicators["entry_price"] * 0.85: # self.Liquidate(symbol) # indicators["entry_price"] = None # indicators["stop_price"] = None # # Trailing stop-loss and target #if self.Portfolio[symbol].Invested: # indicators["stop_price"] = max(indicators["stop_price"], price * 0.90) # if price < indicators["stop_price"]: # self.Liquidate(symbol) # indicators["stop_price"] = None # if price > indicators["entry_price"] * 1.15: # Example target # self.Liquidate(symbol) # indicators["entry_price"] = None # indicators["stop_price"] = None