Overall Statistics
Total Orders
10001
Average Win
0.16%
Average Loss
-0.32%
Compounding Annual Return
49.592%
Drawdown
26.300%
Expectancy
0.304
Start Equity
100000
End Equity
298447.53
Net Profit
198.448%
Sharpe Ratio
1.204
Sortino Ratio
1.15
Probabilistic Sharpe Ratio
56.104%
Loss Rate
13%
Win Rate
87%
Profit-Loss Ratio
0.50
Alpha
0.294
Beta
0.925
Annual Standard Deviation
0.3
Annual Variance
0.09
Information Ratio
1.198
Tracking Error
0.241
Treynor Ratio
0.39
Total Fees
$2098.91
Estimated Strategy Capacity
$53000000.00
Lowest Capacity Asset
TMO R735QTJ8XC9X
Portfolio Turnover
3.59%
from AlgorithmImports import *

class EMAMovingAverageStrategy(QCAlgorithm):
    def Initialize(self):
        self.SetStartDate(2018, 1, 1)
        self.SetEndDate(2024, 1, 1)
        self.SetCash(100000)

        # Add all symbols in S&P 500
        self.symbols = ["AAPL", "MSFT", "GOOGL", "AMZN", "FB", "JPM", "V", "PG", "DIS", "HD",  # Add more symbols as needed
                        "VZ", "KO", "INTC", "NFLX", "TSLA", "NVDA", "UNH", "PYPL", "PEP", "ABT", 
                        "BAC", "CMCSA", "ADBE", "XOM", "MRK", "PFE", "WMT", "NKE", "CSCO", "MCD", 
                        "MA", "ABNB", "CRM", "AVGO", "T", "ORCL", "ACN", "CVX", "LMT", "MDT",
                        "IBM", "TXN", "QCOM", "LOW", "AMGN", "SBUX", "TMO", "COST", "GILD", "UPS"]
        
        # Initialize indicators and rolling windows for each symbol
        self.indicators = {}
        self.sma60_tracks = {}

        for symbol in self.symbols:
            equity = self.AddEquity(symbol, Resolution.Daily)
            self.indicators[symbol] = {
                "ema9": self.EMA(equity.Symbol, 9, Resolution.Daily),
                "ema15": self.EMA(equity.Symbol, 15, Resolution.Daily),
                "ema65": self.EMA(equity.Symbol, 65, Resolution.Daily),
                "ema200": self.EMA(equity.Symbol, 150, Resolution.Daily),
                "sma14": self.EMA(equity.Symbol, 35, Resolution.Daily),
                "rsi": self.RSI(equity.Symbol, 14, Resolution.Daily)
            }
            self.sma60_tracks[symbol] = RollingWindow[IndicatorDataPoint](1)
        
        self.SetWarmUp(1)

    def OnData(self, data):
        if self.IsWarmingUp:
            return

        for symbol in self.symbols:
            if data.ContainsKey(symbol):
                current_data = data[symbol]
                if current_data:
                    self.sma60_tracks[symbol].Add(self.indicators[symbol]["sma14"].Current)
        
        for symbol in self.symbols:
            if self.sma60_tracks[symbol].IsReady:
                self.TradeSymbol(symbol)

    def TradeSymbol(self, symbol):
        indicators = self.indicators[symbol]
        sma60_track = self.sma60_tracks[symbol]  # Corrected attribute name

        if self.IsBuyCondition(indicators, sma60_track):  # Pass sma60_track to IsBuyCondition
            self.SetHoldings(symbol, 0.25)
        elif self.IsSellCondition(indicators, sma60_track):  # Pass sma60_track to IsSellCondition
            self.Liquidate(symbol)
        if self.Portfolio[symbol].Invested:
            if self.IsExitBuyCondition(indicators):
                self.Liquidate(symbol)
            

    def IsBuyCondition(self, indicators, sma60_track):  # Added sma60_track parameter
        ema_condition = (indicators["ema9"].Current.Value > indicators["ema15"].Current.Value > indicators["ema65"].Current.Value > indicators["ema200"].Current.Value)
        sma_condition = all(x.Value > 50 for x in sma60_track)
        return ema_condition and sma_condition

    def IsSellCondition(self, indicators, sma60_track):  # Added sma60_track parameter
        ema_condition = (indicators["ema9"].Current.Value < indicators["ema15"].Current.Value < indicators["ema65"].Current.Value < indicators["ema200"].Current.Value)
        sma_condition = all(x.Value < 50 for x in sma60_track)
        return ema_condition and sma_condition

    def IsExitBuyCondition(self, indicators):
        ema_cross_condition = (indicators["ema9"].Current.Value < indicators["ema65"].Current.Value or indicators["ema15"].Current.Value < indicators["ema65"].Current.Value)
        rsi_condition = indicators["rsi"].Current.Value < 40
        return ema_cross_condition and rsi_condition

    def IsExitSellCondition(self, indicators):
        ema_cross_condition = (indicators["ema9"].Current.Value > indicators["ema65"].Current.Value or indicators["ema15"].Current.Value > indicators["ema65"].Current.Value)
        rsi_condition = indicators["rsi"].Current.Value > 60
        return ema_cross_condition and rsi_condition