Overall Statistics |
Total Trades 32596 Average Win 0.00% Average Loss 0.00% Compounding Annual Return 21.094% Drawdown 3.500% Expectancy 0.208 Net Profit 6.833% Sharpe Ratio 1.572 Probabilistic Sharpe Ratio 61.736% Loss Rate 61% Win Rate 39% Profit-Loss Ratio 2.09 Alpha 0.168 Beta -0.099 Annual Standard Deviation 0.112 Annual Variance 0.012 Information Ratio 1.076 Tracking Error 0.233 Treynor Ratio -1.777 Total Fees $33201.08 |
from datetime import timedelta from QuantConnect.Data.UniverseSelection import * from Selection.FundamentalUniverseSelectionModel import FundamentalUniverseSelectionModel from Alphas.RsiAlphaModel import RsiAlphaModel from Alphas.MacdAlphaModel import MacdAlphaModel from itertools import groupby from math import ceil class LiquidValueStocks(QCAlgorithm): def Initialize(self): self.SetStartDate(2015, 8, 17) self.SetEndDate(2015,12,20) # No need to set End Date as the final submission will be tested # up until the review date # Set $1m Strategy Cash to trade significant AUM self.SetCash(1000000) # Add a relevant benchmark, with the default being SPY self.AddEquity('SPY') self.SetBenchmark('SPY') # On the Average Cross Chart we want 2 series, slow MA and fast MA # avgCross = Chart("Rank") # avgCross.AddSeries(Series("High Rank", SeriesType.Line, 0)) # self.AddChart(avgCross) # Use the Alpha Streams Brokerage Model, developed in conjunction with # funds to model their actual fees, costs, etc. # Please do not add any additional reality modelling, such as Slippage, Fees, Buying Power, etc. self.SetBrokerageModel(AlphaStreamsBrokerageModel()) self.UniverseSettings.Resolution = Resolution.Daily self.SetSecurityInitializer(lambda x: x.SetMarketPrice(self.GetLastKnownPrice(x))) self.AddUniverseSelection(QC500UniverseSelectionModel()) self.AddAlpha(MacdAlphaModel(12, 26, 9, MovingAverageType.Simple, Resolution.Daily)) self.AddAlpha(RsiAlphaModel(15, Resolution.Daily)) self.SetPortfolioConstruction(EqualWeightingPortfolioConstructionModel()) self.SetRiskManagement(NullRiskManagementModel()) self.SetExecution(ImmediateExecutionModel()) self.SetWarmUp(300, Resolution.Daily) class QC500UniverseSelectionModel(FundamentalUniverseSelectionModel): '''Defines the QC500 universe as a universe selection model for framework algorithm For details: https://github.com/QuantConnect/Lean/pull/1663''' def __init__(self, filterFineData = True, universeSettings = None, securityInitializer = None): '''Initializes a new default instance of the QC500UniverseSelectionModel''' super().__init__(filterFineData, universeSettings, securityInitializer) self.numberOfSymbolsCoarse = 1000 self.numberOfSymbolsFine = 500 self.dollarVolumeBySymbol = {} self.lastMonth = -1 def SelectCoarse(self, algorithm, coarse): '''Performs coarse selection for the QC500 constituents. The stocks must have fundamental data The stock must have positive previous-day close price The stock must have positive volume on the previous trading day''' if algorithm.Time.month == self.lastMonth: return Universe.Unchanged sortedByDollarVolume = sorted([x for x in coarse if x.HasFundamentalData and x.Volume > 0 and x.Price > 0], key = lambda x: x.DollarVolume, reverse=True)[:self.numberOfSymbolsCoarse] self.dollarVolumeBySymbol = {x.Symbol:x.DollarVolume for x in sortedByDollarVolume} # If no security has met the QC500 criteria, the universe is unchanged. # A new selection will be attempted on the next trading day as self.lastMonth is not updated if len(self.dollarVolumeBySymbol) == 0: return Universe.Unchanged # return the symbol objects our sorted collection return list(self.dollarVolumeBySymbol.keys()) def SelectFine(self, algorithm, fine): '''Performs fine selection for the QC500 constituents The company's headquarter must in the U.S. The stock must be traded on either the NYSE or NASDAQ At least half a year since its initial public offering The stock's market cap must be greater than 500 million''' sortedBySector = sorted([x for x in fine if x.CompanyReference.CountryId == "USA" and x.CompanyReference.PrimaryExchangeID in ["NYS","NAS"] and (algorithm.Time - x.SecurityReference.IPODate).days > 180 and x.MarketCap > 5e8], key = lambda x: x.CompanyReference.IndustryTemplateCode) count = len(sortedBySector) # If no security has met the QC500 criteria, the universe is unchanged. # A new selection will be attempted on the next trading day as self.lastMonth is not updated if count == 0: return Universe.Unchanged # Update self.lastMonth after all QC500 criteria checks passed self.lastMonth = algorithm.Time.month percent = self.numberOfSymbolsFine / count sortedByDollarVolume = [] # select stocks with top dollar volume in every single sector for code, g in groupby(sortedBySector, lambda x: x.CompanyReference.IndustryTemplateCode): y = sorted(g, key = lambda x: self.dollarVolumeBySymbol[x.Symbol], reverse = True) c = ceil(len(y) * percent) sortedByDollarVolume.extend(y[:c]) sortedByDollarVolume = sorted(sortedByDollarVolume, key = lambda x: self.dollarVolumeBySymbol[x.Symbol], reverse=True) return [x.Symbol for x in sortedByDollarVolume[:self.numberOfSymbolsFine]]