Overall Statistics |
Total Trades 4 Average Win 0.56% Average Loss 0% Compounding Annual Return 3.965% Drawdown 0.200% Expectancy 0 Net Profit 1.124% Sharpe Ratio 1.4 Probabilistic Sharpe Ratio 63.906% Loss Rate 0% Win Rate 100% Profit-Loss Ratio 0 Alpha 0.034 Beta 0.005 Annual Standard Deviation 0.024 Annual Variance 0.001 Information Ratio 0.454 Tracking Error 0.506 Treynor Ratio 6.91 Total Fees $23.33 |
class HorizontalUncoupledInterceptor(QCAlgorithm): def Initialize(self): self.SetStartDate(2020, 1, 1) # Set Start Date self.SetEndDate(2020, 6, 10) # Set End Date self.SetCash(100000) # Set Strategy Cash self.spy = self.AddEquity("SPY", Resolution.Daily) self.xlf = self.AddEquity("XLF", Resolution.Daily) self.spy_close = self.Identity('SPY', Resolution.Daily, Field.Close) self.xlf_close = self.Identity('XLF', Resolution.Daily, Field.Close) self.ratio = IndicatorExtensions.Over(self.spy_close, self.xlf_close) self.ratio_ema = IndicatorExtensions.EMA(self.ratio, 20) self.flag1 = 0 self.SetWarmUp(20, Resolution.Daily) self.Schedule.On(self.DateRules.EveryDay('SPY'), self.TimeRules.At(10, 00), self.Rebalance) def OnData(self, data): if self.flag1 == 1: if not self.ratio_ema.IsReady: return ratioCurrent = self.ratio.Current.Value emaCurrent = self.ratio_ema.Current.Value self.Debug(ratioCurrent) self.Debug(emaCurrent) lowThreshold = emaCurrent * 0.995 highThreshold = emaCurrent * 1.005 if ratioCurrent < emaCurrent: self.SetHoldings(self.spy.Symbol, 0.5) self.SetHoldings(self.xlf.Symbol, -0.5) if ratioCurrent > emaCurrent: self.Liquidate() self.flag1 = 0 def Rebalance(self): self.flag1 = 1