Overall Statistics |
Total Trades 821 Average Win 0.86% Average Loss -0.55% Compounding Annual Return 16.385% Drawdown 13.700% Expectancy 0.302 Net Profit 83.556% Sharpe Ratio 0.876 Loss Rate 49% Win Rate 51% Profit-Loss Ratio 1.54 Alpha 0.126 Beta 0.09 Annual Standard Deviation 0.155 Annual Variance 0.024 Information Ratio 0.101 Tracking Error 0.208 Treynor Ratio 1.52 Total Fees $11144.73 |
using System.Collections.Concurrent; namespace QuantConnect { /// <summary> /// In this algorithm we demonstrate how to perform some technical analysis as /// part of your coarse fundamental universe selection /// </summary> public class EmaCrossUniverseSelectionAlgorithm : QCAlgorithm { // tolerance to prevent bouncing const decimal Tolerance = 0.01m; private const int Count = 10; // use Buffer+Count to leave a little in cash private const decimal TargetPercent = 0.1m; private SecurityChanges _changes = SecurityChanges.None; // holds our coarse fundamental indicators by symbol private readonly ConcurrentDictionary<Symbol, SelectionData> _averages = new ConcurrentDictionary<Symbol, SelectionData>(); // class used to improve readability of the coarse selection function private class SelectionData { public readonly ExponentialMovingAverage Fast; public readonly ExponentialMovingAverage Slow; public readonly Maximum Max; private decimal _value; public SelectionData() { Fast = new ExponentialMovingAverage(100); Slow = new ExponentialMovingAverage(300); Max = new Maximum(200); } // computes an object score of how much large the fast is than the slow // and current price is closer to the 200 day Maximum public decimal ScaledDelta { get { var smaScore = (Fast - Slow)/((Fast + Slow)/2m); var maxScore = (Max - _value)/((Max + _value)/2m); return smaScore + maxScore; } } // updates the EMA50 and EMA100 indicators, returning true when they're both ready public bool Update(DateTime time, decimal value) { _value = value; Max.Update(time, value); return Fast.Update(time, value) && Slow.Update(time, value); } } /// <summary> /// Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized. /// </summary> public override void Initialize() { UniverseSettings.Leverage = 2.0m; UniverseSettings.Resolution = Resolution.Daily; SetStartDate(2010, 01, 01); SetEndDate(2014, 01, 01); SetCash(100*1000); AddUniverse(coarse => { return (from cf in coarse // grab th SelectionData instance for this symbol let avg = _averages.GetOrAdd(cf.Symbol, sym => new SelectionData()) // Update returns true when the indicators are ready, so don't accept until they are where avg.Update(cf.EndTime, cf.Price) // only pick symbols who have their 50 day ema over their 100 day ema where avg.Fast > avg.Slow*(1 + Tolerance) // prefer symbols with a larger delta by percentage between the two averages orderby avg.ScaledDelta descending // we only need to return the symbol and return 'Count' symbols select cf.Symbol).Take(Count); }, FineSelectionFunction); } public IEnumerable<Symbol> FineSelectionFunction( IEnumerable<FineFundamental> fine) { // sort descending by P/E ratio var sortedByPeRatio = fine .OrderByDescending(x => x.ValuationRatios.PERatio); // take the top entries from our sorted collection var topFine = sortedByPeRatio.Take(2); // we need to return only the symbol objects return topFine.Select(x => x.Symbol); } /// <summary> /// OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here. /// </summary> /// <param name="data">TradeBars dictionary object keyed by symbol containing the stock data</param> public void OnData(TradeBars data) { if (_changes == SecurityChanges.None) return; // liquidate securities removed from our universe foreach (var security in _changes.RemovedSecurities) { if (security.Invested) { Liquidate(security.Symbol); } } // we'll simply go long each security we added to the universe foreach (var security in _changes.AddedSecurities) { SetHoldings(security.Symbol, TargetPercent); } } /// <summary> /// Event fired each time the we add/remove securities from the data feed /// </summary> /// <param name="changes">Object containing AddedSecurities and RemovedSecurities</param> public override void OnSecuritiesChanged(SecurityChanges changes) { _changes = changes; } } }