Overall Statistics |
Total Trades 751 Average Win 2.03% Average Loss -0.68% Compounding Annual Return 16.873% Drawdown 18.400% Expectancy 0.125 Net Profit 48.512% Sharpe Ratio 0.743 Loss Rate 72% Win Rate 28% Profit-Loss Ratio 2.98 Alpha 0.249 Beta -0.342 Annual Standard Deviation 0.253 Annual Variance 0.064 Information Ratio 0.027 Tracking Error 0.293 Treynor Ratio -0.55 Total Fees $2043.96 |
using System; using System.Linq; using QuantConnect.Indicators; using QuantConnect.Models; namespace QuantConnect.Algorithm.Examples { /// <summary> /// /// QuantConnect University: EMA + SMA Cross /// /// In this example we look at the canonical 20/50 day moving average cross. This algorithm /// will go long when the 20 crosses above the 50 and will liquidate when the 20 crosses /// back below the 50. // -------VATS CHANGES ----------- // 1) Intraday - Minute // 2) 20/50 // -------VATS CHANGES ----------- /// </summary> public class QCUMovingAverageCross : QCAlgorithm { private const string Symbol = "USO"; private ExponentialMovingAverage fast; private ExponentialMovingAverage slow; private SimpleMovingAverage[] ribbon; //Initialize the data and resolution you require for your strategy: public override void Initialize() { SetStartDate(2013, 01, 01); SetEndDate(2015, 07, 15); SetCash(10000); // request SPY data with minute resolution AddSecurity(SecurityType.Equity, Symbol, Resolution.Hour); // create a 15 day exponential moving average fast = EMA(Symbol, 1, Resolution.Hour); // create a 30 day exponential moving average slow = EMA(Symbol, 20, Resolution.Hour); SetRunMode(RunMode.Series); // the following lines produce a simple moving average ribbon, this isn't // actually used in the algorithm's logic, but shows how easy it is to make // indicators and plot them! // note how we can easily define these indicators to receive hourly data int ribbonCount = 7; int ribbonInterval = 15*8; ribbon = new SimpleMovingAverage[ribbonCount]; for(int i = 0; i < ribbonCount; i++) { ribbon[i] = SMA(Symbol, (i + 1)*ribbonInterval, Resolution.Hour); } } private DateTime previous; public void OnData(TradeBars data) { // a couple things to notice in this method: // 1. We never need to 'update' our indicators with the data, the engine takes care of this for us // 2. We can use indicators directly in math expressions // 3. We can easily plot many indicators at the same time // wait for our slow ema to fully initialize if (!slow.IsReady) return; // only once per day // Commented the following line to simulate intraday - Vats //if (previous.Date == data.Time.Date) return; // define a small tolerance on our checks to avoid bouncing const decimal tolerance = 0.00015m; var holdings = Portfolio[Symbol].Quantity; // we only want to go long if we're currently short or flat if (holdings <= 0) { // if the fast is greater than the slow, we'll go long if (fast > slow * (1 + tolerance)) { // write qty to log for debug purposes. comment after debugging //Log("QTY >> " + Portfolio[Symbol].Quantity); Log("BUY >> " + Securities[Symbol].Price); SetHoldings(Symbol, 1.0); } } // we only want to liquidate if we're currently long // if the fast is less than the slow we'll liquidate our long if (holdings > 0 && fast < slow) { Log("FLATTEN >> " + Securities[Symbol].Price); // write qty to log for debug purposes. comment after debugging //Log("QTY >> " + Portfolio[Symbol].Quantity); Liquidate(Symbol); Log("SHORT >> " + Securities[Symbol].Price); SetHoldings(Symbol, -1.0); } Plot(Symbol, "Price", data[Symbol].Price); Plot("Ribbon", "Price", data[Symbol].Price); // easily plot indicators, the series name will be the name of the indicator Plot(Symbol, fast, slow); Plot("Ribbon", ribbon); previous = data.Time; } } }