Overall Statistics |
Total Trades 268 Average Win 0.20% Average Loss -0.03% Compounding Annual Return -61.892% Drawdown 2.400% Expectancy -0.340 Net Profit -1.052% Sharpe Ratio -5.779 Loss Rate 90% Win Rate 10% Profit-Loss Ratio 5.89 Alpha 0 Beta -47.909 Annual Standard Deviation 0.092 Annual Variance 0.008 Information Ratio -5.895 Tracking Error 0.092 Treynor Ratio 0.011 Total Fees $894.78 |
### <summary> ### Demonstration algorthm for the Warm Up feature with basic indicators. ### </summary> ### <meta name="tag" content="indicators" /> ### <meta name="tag" content="warm up" /> ### <meta name="tag" content="history and warm up" /> ### <meta name="tag" content="using data" /> class WarmupAlgorithm(QCAlgorithm): def Initialize(self): '''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.''' self.SetStartDate(2013,10,8) #Set Start Date self.SetEndDate(2013,10,11) #Set End Date self.SetCash(100000) #Set Strategy Cash # Find more symbols here: http://quantconnect.com/data self.AddEquity("SPY", Resolution.Second) fast_period = 60 slow_period = 3600 self.fast = self.EMA("SPY", fast_period) self.slow = self.EMA("SPY", slow_period) self.SetWarmup(slow_period) self.first = True def OnData(self, data): '''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.''' if self.first and not self.IsWarmingUp: self.first = False self.Log("Fast: {0}".format(self.fast.Samples)) self.Log("Slow: {0}".format(self.slow.Samples)) if self.fast.Current.Value > self.slow.Current.Value: self.SetHoldings("SPY", 1) else: self.SetHoldings("SPY", -1)