Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio -1.923 Tracking Error 0.186 Treynor Ratio 0 Total Fees $0.00 |
class NumberStocksInUniverce(QCAlgorithm): def Initialize(self): self.SetStartDate(2020, 6, 1) self.SetEndDate(2020,11,9) self.SetCash(10000) self.AddUniverse(self.CoarseSelection, self.FineSelection) self.UniverseSettings.Resolution = Resolution.Daily def CoarseSelection(self, coarse): AllSecurities = [ x for x in coarse ] self.Plot("Strategy Equity", "AllSecurities", len(AllSecurities)) Stocks = [x for x in AllSecurities if (x.HasFundamentalData) and (float(x.Price) > 0)] self.Plot("Strategy Equity", "Stocks", len(Stocks)) StocksAboveFive = [x for x in Stocks if (x.HasFundamentalData) and (float(x.Price) > 5)] self.Plot("Strategy Equity", "StocksAboveFive", len(StocksAboveFive)) TopDollarVolume = sorted(StocksAboveFive, key=lambda x: x.DollarVolume, reverse=True)[:500] self.Plot("Strategy Equity", "TopDollarVolume", len(TopDollarVolume)) return [x.Symbol for x in TopDollarVolume[:500]] def FineSelection(self, fine): top_pcf_ratio = sorted(fine, key=lambda x: x.ValuationRatios.PCFRatio, reverse=True)[:50] self.Plot("Strategy Equity", "PCFRatio", len(top_pcf_ratio)) return [x.Symbol for x in top_pcf_ratio[:50]] ''' top_roe = sorted(fine, key=lambda x: x.OperationRatios.ROE.OneMonth, reverse=True)[:50] self.Plot("Strategy Equity", "ROE", len(top_roe)) return [x.Symbol for x in top_pcf_ratio[:50]] '''