Overall Statistics |
Total Trades 2 Average Win 1.05% Average Loss 0% Compounding Annual Return 5.374% Drawdown 3.000% Expectancy 0 Net Profit 1.047% Sharpe Ratio 2.359 Probabilistic Sharpe Ratio 81.940% Loss Rate 0% Win Rate 100% Profit-Loss Ratio 0 Alpha 0.059 Beta -0.011 Annual Standard Deviation 0.023 Annual Variance 0.001 Information Ratio -1.868 Tracking Error 0.168 Treynor Ratio -5.015 Total Fees $2.00 Estimated Strategy Capacity $53000000.00 |
from alphaEMA import EmaCross from Alphas.EmaCrossAlphaModel import EmaCrossAlphaModel from Execution.ImmediateExecutionModel import ImmediateExecutionModel from Portfolio.EqualWeightingPortfolioConstructionModel import EqualWeightingPortfolioConstructionModel from Selection.QC500UniverseSelectionModel import QC500UniverseSelectionModel class FormalYellowGreenBee(QCAlgorithm): def Initialize(self): self.SetStartDate(2021, 1, 2) # Set Start Date self.SetEndDate(2021, 3, 15) # Set Start Date self.SetCash(100000) # Set Strategy Cash # self.AddEquity("SPY", Resolution.Minute) self.AddAlpha(EmaCross(50, 200, Resolution.Hour)) self.SetExecution(ImmediateExecutionModel()) self.SetPortfolioConstruction(EqualWeightingPortfolioConstructionModel(lambda time: None)) self.UniverseSettings.Resolution = Resolution.Hour symbols = [ Symbol.Create("TSLA", SecurityType.Equity, Market.USA) , Symbol.Create("HES", SecurityType.Equity, Market.USA) ] self.SetUniverseSelection( ManualUniverseSelectionModel(symbols) ) self.SetSecurityInitializer(lambda x: x.SetDataNormalizationMode(DataNormalizationMode.Adjusted)) def OnData(self, data): '''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here. Arguments: data: Slice object keyed by symbol containing the stock data ''' # if not self.Portfolio.Invested: # self.SetHoldings("SPY", 1)
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from clr import AddReference AddReference("QuantConnect.Common") AddReference("QuantConnect.Algorithm") AddReference("QuantConnect.Algorithm.Framework") AddReference("QuantConnect.Indicators") from QuantConnect import * from QuantConnect.Indicators import * from QuantConnect.Algorithm import * from QuantConnect.Algorithm.Framework import * from QuantConnect.Algorithm.Framework.Alphas import * class EmaCross(AlphaModel): '''Alpha model that uses an EMA cross to create insights''' def __init__(self, fastPeriod = 12, slowPeriod = 26, resolution = Resolution.Daily): '''Initializes a new instance of the EmaCrossAlphaModel class Args: fastPeriod: The fast EMA period slowPeriod: The slow EMA period''' self.fastPeriod = fastPeriod self.slowPeriod = slowPeriod self.resolution = resolution self.predictionInterval = Time.Multiply(Extensions.ToTimeSpan(resolution), fastPeriod) self.symbolDataBySymbol = {} resolutionString = Extensions.GetEnumString(resolution, Resolution) self.Name = '{}({},{},{})'.format(self.__class__.__name__, fastPeriod, slowPeriod, resolutionString) def Update(self, algorithm, data): '''Updates this alpha model with the latest data from the algorithm. This is called each time the algorithm receives data for subscribed securities Args: algorithm: The algorithm instance data: The new data available Returns: The new insights generated''' insights = [] for symbol, symbolData in self.symbolDataBySymbol.items(): if symbolData.Fast.IsReady and symbolData.Slow.IsReady and data.Bars.ContainsKey(symbolData.Symbol): if data[symbolData.Symbol] is not None: if algorithm.Portfolio[symbolData.Symbol].IsLong and symbolData.bull_insight == True: if data[symbolData.Symbol].Low < symbolData.bull_SL_entry and symbolData.bull_insight_exp != data.Time: symbolData.bull_insight = False insights.append(Insight.Price(symbolData.Symbol,symbolData.bull_insight_exp - data.Time , InsightDirection.Flat, 0, 0, None)) algorithm.Debug( str(algorithm.Time) + "Bull Exit " + str(symbolData.Symbol) + " hit stoploss: " + str(symbolData.bull_SL_entry) + " low: " +str(data[symbolData.Symbol].Low )) elif data[symbolData.Symbol].Close > symbolData.bull_PT_entry and symbolData.bull_insight_exp != data.Time: symbolData.bull_insight = False insights.append(Insight.Price(symbolData.Symbol,symbolData.bull_insight_exp - data.Time , InsightDirection.Flat, 0, 0, None)) algorithm.Debug( str(algorithm.Time) + "Bull Exit " + str(symbolData.Symbol) + " hit price_target: " + str(symbolData.bull_PT_entry) + " close: " +str(data[symbolData.Symbol].Close)) elif symbolData.bull_insight_exp <= data.Time: symbolData.bull_insight = False algorithm.Debug( str(algorithm.Time) + "Bull Exit " + str(symbolData.Symbol) + " insight expired: " + str(symbolData.bull_PT_entry) + " close: " +str(data[symbolData.Symbol].Close)) if algorithm.Portfolio[symbolData.Symbol].IsShort and symbolData.bear_insight == True: if data[symbolData.Symbol].High > symbolData.bear_SL_entry and symbolData.bear_insight_exp != data.Time: symbolData.bear_insight = False insights.append(Insight.Price(symbolData.Symbol,symbolData.bear_insight_exp - data.Time, InsightDirection.Flat, 0, 0, None)) algorithm.Debug( str(algorithm.Time) + "Bear Exit " + str(symbolData.Symbol) + " hit stoploss: " + str(symbolData.bear_SL_entry) + " high: " +str(data[symbolData.Symbol].High )) elif data[symbolData.Symbol].Close < symbolData.bear_PT_entry and symbolData.bear_insight_exp != algorithm.Time: symbolData.bear_insight = False insights.append(Insight.Price(symbolData.Symbol,symbolData.bear_insight_exp - data.Time, InsightDirection.Flat, 0, 0, None)) algorithm.Debug( str(algorithm.Time) + "Bear Exit " + str(symbolData.Symbol) + " hit price_target: " + str(symbolData.bear_PT_entry) + " close: " +str(data[symbolData.Symbol].Close)) elif symbolData.bear_insight_exp <= algorithm.Time: symbolData.bear_insight = False algorithm.Debug( str(algorithm.Time) + "Bear Exit " + str(symbolData.Symbol) + " insight expired: " + str(symbolData.bear_PT_entry) + " close: " +str(data[symbolData.Symbol].Close)) if symbolData.FastIsOverSlow: if symbolData.Slow > symbolData.Fast: close = data[symbolData.Symbol].Close symbolData.bear_insight_exp = data.Time + self.predictionInterval symbolData.bear_PT_entry = .93*close symbolData.bear_SL_entry = 1.03*close symbolData.bear_insight = True insights.append(Insight.Price(symbolData.Symbol, self.predictionInterval, InsightDirection.Down)) elif symbolData.SlowIsOverFast: if symbolData.Fast > symbolData.Slow: close = data[symbolData.Symbol].Close symbolData.bull_insight_exp = data.Time + self.predictionInterval symbolData.bull_PT_entry = 1.08*close symbolData.bull_SL_entry = .97*close symbolData.bull_insight = True insights.append(Insight.Price(symbolData.Symbol, self.predictionInterval, InsightDirection.Up)) symbolData.FastIsOverSlow = symbolData.Fast > symbolData.Slow return insights def OnSecuritiesChanged(self, algorithm, changes): '''Event fired each time the we add/remove securities from the data feed Args: algorithm: The algorithm instance that experienced the change in securities changes: The security additions and removals from the algorithm''' for added in changes.AddedSecurities: symbolData = self.symbolDataBySymbol.get(added.Symbol) if symbolData is None: # create fast/slow EMAs symbolData = SymbolData(added) symbolData.Fast = algorithm.EMA(added.Symbol, self.fastPeriod, self.resolution) symbolData.Slow = algorithm.EMA(added.Symbol, self.slowPeriod, self.resolution) self.symbolDataBySymbol[added.Symbol] = symbolData else: # a security that was already initialized was re-added, reset the indicators symbolData.Fast.Reset() symbolData.Slow.Reset() class SymbolData: '''Contains data specific to a symbol required by this model''' def __init__(self, security): self.Security = security self.Symbol = security.Symbol self.Fast = None self.Slow = None self.bull_PT_entry = None self.bear_PT_entry = None self.bull_SL_entry = None self.bear_SL_entry = None self.bear_insight_exp =None self.bull_insight_exp =None self.bull_insight = False self.bear_insight = False # True if the fast is above the slow, otherwise false. # This is used to prevent emitting the same signal repeatedly self.FastIsOverSlow = False @property def SlowIsOverFast(self): return not self.FastIsOverSlow