Overall Statistics |
Total Orders 36 Average Win 2.10% Average Loss -0.92% Compounding Annual Return 24.943% Drawdown 8.300% Expectancy 1.415 Start Equity 100000 End Equity 127329.05 Net Profit 27.329% Sharpe Ratio 1.219 Sortino Ratio 1.553 Probabilistic Sharpe Ratio 80.171% Loss Rate 27% Win Rate 73% Profit-Loss Ratio 2.29 Alpha 0.037 Beta 0.628 Annual Standard Deviation 0.096 Annual Variance 0.009 Information Ratio -0.131 Tracking Error 0.08 Treynor Ratio 0.186 Total Fees $36.00 Estimated Strategy Capacity $98000000.00 Lowest Capacity Asset FB V6OIPNZEM8V9 Portfolio Turnover 0.70% |
from AlgorithmImports import * from scipy.optimize import brentq import math from scipy.stats import norm class StockBuyingWithIV(QCAlgorithm): def Initialize(self): self.SetStartDate(2024, 1, 1) self.SetEndDate(2025, 1, 30) self.SetCash(100000) # List of stocks to trade self.tech_stocks = ["AAPL", "MSFT", "GOOGL", "AMZN", "META", "TSLA", "NVDA"] self.equities = {} self.rsi = {} self.ema = {} self.options = {} for stock in self.tech_stocks: equity = self.AddEquity(stock, Resolution.Minute).Symbol self.equities[stock] = equity # Add technical indicators # 14 day RSI - overbought (RSI > 70) or oversold (RSI < 30). self.rsi[stock] = self.RSI(equity, 14, MovingAverageType.Wilders, Resolution.Minute, Field.Close) # 50 day EMA # EMA based on last 50 minutes close - short term # self.ema[stock] = self.EMA(equity, 50, Resolution.Minute, Field.Close) # based on 50 day - long term self.ema[stock] = self.EMA(equity, 50, Resolution.Daily, Field.Close) # Add options to calculate implied volatility option = self.AddOption(stock, Resolution.Minute) option.SetFilter(self.UniverseFilter) self.options[stock] = option # Schedule daily evaluation for each stock self.Schedule.On(self.DateRules.EveryDay(self.equities[stock]), self.TimeRules.AfterMarketOpen(self.equities[stock], 30), lambda stock=stock: self.Evaluate(stock)) def UniverseFilter(self, universe): # Select strikes within +/- 2 of the ATM strike and expirations up to 30 days return universe.Strikes(-2, 2).Expiration(timedelta(0), timedelta(30)) def Evaluate(self, stock): # Fetch the current stock price price = self.Securities[self.equities[stock]].Price # Get the RSI and EMA values for the stock current_rsi = self.rsi[stock].Current.Value current_ema = self.ema[stock].Current.Value # Fetch the implied volatility for the stock using the options data iv = self.GetImpliedVolatility(stock) # Condition to buy based on RSI, EMA, and IV strategy # Buy when RSI is below 30 (oversold), price is above EMA (indicating uptrend), and IV is low if current_rsi < 30 and price > current_ema and iv < 0.5: self.BuyStock(stock) # SELL CONDITION elif current_rsi > 70 and price < current_ema: self.SellStock(stock) def GetImpliedVolatility(self, stock): # Get the option chain for the stock chain = self.CurrentSlice.OptionChains.get(self.options[stock].Symbol) if not chain: return 0.4 # Default IV if no options are found # Calculate underlying price and identify ATM options underlying_price = self.Securities[self.equities[stock]].Price atm_call, atm_put = self.GetATMOptions(chain, underlying_price) if not atm_call or not atm_put: return 0.4 # Default IV if ATM options are not found # Calculate and log the implied volatilities of the ATM options call_iv = self.CalculateIV(atm_call, underlying_price) put_iv = self.CalculateIV(atm_put, underlying_price) if call_iv is None or put_iv is None: return 0.4 # Default IV if calculation fails # Return the average of the call and put IV return (call_iv + put_iv) / 2 def GetATMOptions(self, chain, underlying_price): # Select the option contracts that are closest to being ATM atm_contract = min(chain, key=lambda x: abs(x.Strike - underlying_price)) atm_calls = [o for o in chain if o.Strike == atm_contract.Strike and o.Right == OptionRight.Call] atm_puts = [o for o in chain if o.Strike == atm_contract.Strike and o.Right == OptionRight.Put] return (atm_calls[0] if atm_calls else None, atm_puts[0] if atm_puts else None) def CalculateIV(self, contract, underlying_price): # Calculate implied volatility using the Black-Scholes model and brentq numerical method market_price = (contract.BidPrice + contract.AskPrice) / 2 if market_price <= 0: return None T = (contract.Expiry - self.Time).days / 365.0 if T <= 0: self.Debug("Skipping contract with non-positive time to expiry") return None def bs_price(sigma): # Define the Black-Scholes pricing formula dependent on sigma d1 = (math.log(underlying_price / contract.Strike) + (0.01 + 0.5 * sigma**2) * T) / (sigma * math.sqrt(T)) d2 = d1 - sigma * math.sqrt(T) if contract.Right == OptionRight.Call: return underlying_price * norm.cdf(d1) - contract.Strike * math.exp(-0.01 * T) * norm.cdf(d2) else: # Put return contract.Strike * math.exp(-0.01 * T) * norm.cdf(-d2) - underlying_price * norm.cdf(-d1) # Use brentq to find the sigma that makes the theoretical price equal to the market price try: return brentq(lambda sigma: bs_price(sigma) - market_price, 0.01, 2) except ValueError: return None def BuyStock(self, stock): # Execute market order to buy stock if not already holding # if self.Portfolio[stock].Invested == False: # self.MarketOrder(stock, 100) # Buy 100 shares of stock self.SetHoldings(stock, 0.1) self.Debug(f"Bought {stock}") # Debug to show current holdings self.Debug(f"Current Holdings: {[f'{symbol}: {holding.Quantity}' for symbol, holding in self.Portfolio.items() if holding.Invested]}") def SellStock(self, stock): # if you hold stock if self.Portfolio[stock].Invested: self.Liquidate(stock) self.Debug(f"Sold all shares of {stock}") # need way to balance protfolio of what we hold