Overall Statistics |
Total Trades 969 Average Win 0.45% Average Loss -0.16% Compounding Annual Return 19.340% Drawdown 13.200% Expectancy 1.341 Net Profit 164.838% Sharpe Ratio 1.497 Probabilistic Sharpe Ratio 79.620% Loss Rate 39% Win Rate 61% Profit-Loss Ratio 2.82 Alpha 0.196 Beta 0.072 Annual Standard Deviation 0.137 Annual Variance 0.019 Information Ratio 0.355 Tracking Error 0.221 Treynor Ratio 2.827 Total Fees $1782.46 |
import numpy as np import pandas as pd class TransdimensionalOptimizedAtmosphericScrubbers(QCAlgorithm): def Initialize(self): self.SetStartDate(2015, 4, 29) # Set Start Date self.SetCash(100000) # Set Strategy Cash res = Resolution.Minute self.STOCK = self.AddEquity('QQQ', res).Symbol self.BONDS = [self.AddEquity(ticker, res).Symbol for ticker in ['TLT', 'IEF']] self.XLI, self.XLU, self.UUP = [self.AddEquity(ticker, res).Symbol for ticker in ['XLI', 'XLU', 'UUP'] ] self.VOLA = 126; self.BULL = 1; self.COUNT = 0; self.OUT_DAY = 0; self.RET_INITIAL = 80; self.LEV = 1.00; self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.AfterMarketOpen('QQQ', 140), self.daily_check) self.mkt_closes = RollingWindow[float](self.VOLA + 1) history = self.History([self.STOCK], self.VOLA + 1, Resolution.Daily) if not history.empty and 'close' in history.columns: for time, close in history.loc[self.STOCK].close.iteritems(): self.mkt_closes.Add(close) # Setup consolidator self.consolidator = TradeBarConsolidator(1) self.consolidator.DataConsolidated += self.DailyHandler self.SubscriptionManager.AddConsolidator(self.STOCK, self.consolidator) def DailyHandler(self, sender, consolidated): self.mkt_closes.Add(consolidated.Close) def daily_check(self): if not self.mkt_closes.IsReady: return vola = pd.Series(self.mkt_closes).iloc[::-1].pct_change().std() * np.sqrt(252) WAIT_DAYS = int(vola * self.RET_INITIAL) RET = int((1.0 - vola) * self.RET_INITIAL) P = self.History([self.XLI, self.XLU, self.UUP], RET + 2, Resolution.Daily)['close'].unstack(level=0).iloc[:-1].dropna() if (len(P.columns) < 2): return ratio = (P[self.XLI].iloc[-1] / P[self.XLI].iloc[0]) / (P[self.XLU].iloc[-1] / P[self.XLU].iloc[0]) exit = ratio < 1.0 if exit: self.BULL = 0; self.OUT_DAY = self.COUNT; elif (self.COUNT >= self.OUT_DAY + WAIT_DAYS): self.BULL = 1 self.COUNT += 1 wt_stk = self.LEV if self.BULL else 0; wt_bnd = 0 if self.BULL else self.LEV; wt = {} wt[self.STOCK] = wt_stk for sec in self.BONDS: wt[sec] = wt_bnd / len(self.BONDS) for sec, weight in wt.items(): self.SetHoldings(sec, weight)