Overall Statistics
Total Trades
18
Average Win
83.67%
Average Loss
-6.71%
Compounding Annual Return
128.793%
Drawdown
43.100%
Expectancy
4.989
Net Profit
424.255%
Sharpe Ratio
1.679
Probabilistic Sharpe Ratio
56.848%
Loss Rate
56%
Win Rate
44%
Profit-Loss Ratio
12.47
Alpha
0
Beta
0
Annual Standard Deviation
0.761
Annual Variance
0.58
Information Ratio
1.679
Tracking Error
0.761
Treynor Ratio
0
Total Fees
$45.00
Estimated Strategy Capacity
$75000.00
Lowest Capacity Asset
TSLA XTGAPMUU8LTY|TSLA UNU3P8Y3WFAD
from System.Drawing import Color
from AlgorithmImports import *

class Benchmark:

    def __init__(self, algo, underlying,  shares = 100, indicators = {}):
        self.algo = algo
        self.underlying = underlying
        # Variable to hold the last calculated benchmark value
        self.benchmarkCash = None
        self.benchmarkShares = shares
        self.BetaValue = 0

        self.tradingChart = Chart('Trade Plot')
        # On the Trade Plotter Chart we want 3 series: trades and price:
        strategies = ["Call"] # ["Sold Call", "Sold Put", "Straddle"]
        for s in strategies:
            self.tradingChart.AddSeries(Series("Sell {}".format(s), SeriesType.Scatter, '$', Color.Green, ScatterMarkerSymbol.Circle))
            self.tradingChart.AddSeries(Series("Buy {}".format(s), SeriesType.Scatter, '$', Color.Red, ScatterMarkerSymbol.Triangle))
        
        self.sqz = Chart('Squeeze')
        self.sqz.AddSeries(Series('No SQZ', SeriesType.Scatter, '.', Color.Green, ScatterMarkerSymbol.Circle))
        self.sqz.AddSeries(Series('Low SQZ', SeriesType.Scatter, '.', Color.Black, ScatterMarkerSymbol.Circle))
        self.sqz.AddSeries(Series('Mid SQZ', SeriesType.Scatter, '.', Color.Red, ScatterMarkerSymbol.Circle))
        self.sqz.AddSeries(Series('High SQZ', SeriesType.Scatter, '.', Color.Orange, ScatterMarkerSymbol.Circle))
        self.sqz.AddSeries(Series('Momentum', SeriesType.Line, '.', Color.Blue))
        self.algo.AddChart(self.sqz)

        self.tradingChart.AddSeries(Series('Price', SeriesType.Line, '$', Color.White))
        self.algo.AddChart(self.tradingChart)
        
        self.AddIndicators(indicators)

        self.resample = datetime.min
        self.resamplePeriod = (self.algo.EndDate - self.algo.StartDate) / 2000

    def SetBeta(self, value):
        self.BetaValue = value

    def AddIndicators(self, indicators):
        self.indicators = indicators
        for name, indicator in indicators.items(): 
            self.algo.AddChart(Chart(name))

    def PrintBenchmark(self):
        if self.algo.Time <= self.resample: return

        self.resample = self.algo.Time  + self.resamplePeriod
        # self.__PrintBuyHold()
        self.__PrintTrades()
        self.__PrintCash()
        self.__PrintIndicators()
        self.__PrintBeta()

    def PrintTrade(self, order, trade, quantity):
        ''' Prints the price of the option on our trade chart. '''
        plotTradeName = ''
        tradeStrike = trade.Strike()
        if isinstance(tradeStrike, list):
            if order.Symbol.ID.OptionRight == OptionRight.Put:
                tradeName = "{0} Put".format(trade.name)
            elif order.Symbol.ID.OptionRight == OptionRight.Call:
                tradeName = "{0} Call".format(trade.name)
            tradeStrike = order.Symbol.ID.StrikePrice
        else:
            tradeName = trade.name

        if quantity < 0:
            plotTradeName = 'Sell {}'.format(tradeName)
        elif quantity == 0:
            plotTradeName = 'Flat {}'.format(tradeName)
        else:
            plotTradeName = 'Buy {}'.format(tradeName)
    
        self.algo.Plot('Trade Plot', plotTradeName, tradeStrike)

    def __PrintBeta(self):
        self.algo.Plot('Trade Plot', 'Beta', self.BetaValue)

    def __PrintIndicators(self):
        ''' Prints the indicators array values to the Trade Plot chart.  '''
        for name, indicator in self.indicators.items():
            if name == 'BB':
                self.__PlotBB(indicator)
            elif name == 'AROON':
                self.__PlotAROON(indicator)
            elif name == 'MACD':
                self.__PlotMACD(indicator)
            elif name == 'Squeeze':
                self.__PlotSqueeze(indicator)
            else:
                self.algo.PlotIndicator(name, indicator)

    def __PlotBB(self, indicator):
        self.algo.Plot('BB', 'Price', self.__UnderlyingPrice())
        self.algo.Plot('BB', 'BollingerUpperBand', indicator.UpperBand.Current.Value)
        self.algo.Plot('BB', 'BollingerMiddleBand', indicator.MiddleBand.Current.Value)
        self.algo.Plot('BB', 'BollingerLowerBand', indicator.LowerBand.Current.Value)

    def __PlotMACD(self, indicator):
        # self.algo.Plot('MACD', 'MACD', indicator.Current.Value)
        # self.algo.Plot('MACD', 'MACDSignal', indicator.Signal.Current.Value)
        # self.algo.Plot("MACD", "Price", self.__UnderlyingPrice())
        self.algo.Plot("MACD", "Zero", 0)
        self.algo.Plot('MACD', 'MACDSignal', indicator.Signal.Current.Value)

    def __PlotAROON(self, indicator):
        self.algo.Plot('AROON', 'Aroon', indicator.Current.Value)
        self.algo.Plot('AROON', 'AroonUp', indicator.AroonUp.Current.Value)
        self.algo.Plot('AROON', 'AroonDown', indicator.AroonDown.Current.Value)

    def __PlotSqueeze(self, indicator):
        self.algo.Plot('Squeeze', 'Momentum', indicator.Current.Value)
        if indicator.Squeeze == 0:
            self.algo.Plot('Squeeze', 'No SQZ', 0)
        elif indicator.Squeeze == 1:
            self.algo.Plot('Squeeze', 'Low SQZ', 0)
        elif indicator.Squeeze == 2:
            self.algo.Plot('Squeeze', 'Mid SQZ', 0)
        elif indicator.Squeeze == 3:
            self.algo.Plot('Squeeze', 'High SQZ', 0)


    def __PrintCash(self):
        ''' Prints the cash in the portfolio in a separate chart. '''
        self.algo.Plot('Cash', 'Options gain', self.algo.Portfolio.Cash)

    def __PrintTrades(self):
        ''' Prints the underlying price on the trades chart. '''
        self.algo.Plot('Trade Plot', 'Price', self.__UnderlyingPrice())

    def __PrintBuyHold(self):
        ''' Simulate buy and hold the shares. We use the same number of shares as the backtest.
            In this situation is 100 shares + the cash of the portfolio.'''
        if not self.benchmarkCash:
            self.benchmarkCash = self.algo.Portfolio.TotalPortfolioValue - self.benchmarkShares * self.__UnderlyingPrice()

        self.algo.Plot("Strategy Equity", "Buy & Hold", self.benchmarkCash + self.benchmarkShares * self.__UnderlyingPrice())

    def __UnderlyingPrice(self):
        return self.algo.Securities[self.underlying].Close
#region imports
from AlgorithmImports import *
#endregion
#region imports
from .Benchmark import Benchmark
#endregion


# Your New Python File
#region imports
from AlgorithmImports import *
#endregion
class RipsterClouds:
    ma_len1 = 8 # input(title='Short EMA1 Length', defval=8) // pullback
    ma_len2 = 9 # input(title='Long EMA1 Length', defval=9) // pullback
    ma_len3 = 5 # input(title='Short EMA2 Length', defval=5) // short trend
    ma_len4 = 12 # input(title='Long EMA2 Length', defval=12) // short trend
    ma_len5 = 20 # input(title='Short EMA3 Length', defval=20) // pivot
    ma_len6 = 21 # input(title='Long EMA3 Length', defval=21) // pivot
    ma_len7 = 34 # input(title='Short EMA4 Length', defval=34) // medium trend
    ma_len8 = 50 # input(title='Long EMA4 Length', defval=50) // medium trend
    ma_len9 = 180 # input(title='Short EMA5 Length', defval=180) // long trend
    ma_len10 = 200 # input(title='Long EMA5 Length', defval=200) // long trend
    ma_offset = 0 # input(title='Offset', defval=0)
    # var bool showLong = input(true, title='Show Long Alerts')
    # var bool showShort = input(true, title='Show Short Alerts')
    # showLine = input(false, title='Display EMA Line')
    # ema1 = input(true, title='Show EMA Cloud-1')
    # ema2 = input(true, title='Show EMA Cloud-2')
    # ema3 = input(true, title='Show EMA Cloud-3')
    # ema4 = input(true, title='Show EMA Cloud-4')
    # ema5 = input(true, title='Show EMA Cloud-5')

    def __init__(self, algorithm, ticker, resolution):
        self.algorithm = algorithm
        self.ticker = ticker
        self.resolution = resolution
        self.htf_ma1 = self.EMA(self.ma_len1)
        self.htf_ma2 = self.EMA(self.ma_len2)
        self.htf_ma3 = self.EMA(self.ma_len3)
        self.htf_ma4 = self.EMA(self.ma_len4)
        self.htf_ma5 = self.EMA(self.ma_len5)
        self.htf_ma6 = self.EMA(self.ma_len6)
        self.htf_ma7 = self.EMA(self.ma_len7)
        self.htf_ma8 = self.EMA(self.ma_len8)
        self.htf_ma9 = self.EMA(self.ma_len9)
        self.htf_ma10 = self.EMA(self.ma_len10)

    def EMA(self, malen):
        # src = input(title='Source', defval=hl2)
        return self.algorithm.EMA(self.ticker, malen, self.resolution, (Field.High + Field.Low) / 2) # no ideal if the hl/2 thing works!!

    # emacloudleading = input.int(0, minval=0, title='Leading Period For EMA Cloud')
    # mashort1 = htf_ma1
    # malong1 = htf_ma2
    # mashort2 = htf_ma3
    # malong2 = htf_ma4
    # mashort3 = htf_ma5
    # malong3 = htf_ma6
    # mashort4 = htf_ma7
    # malong4 = htf_ma8
    # mashort5 = htf_ma9
    # malong5 = htf_ma10

    # var color GREEN_COLOR = #0DCC0E
    # var color RED_COLOR = #F50202
    # var color GREY_COLOR = #585C60
    # var color BLUE_COLOR = #0097A7
    # var color ORANGE_COLOR = #F57F17

    # cloudcolour1 = mashort1 >= malong1 ? color.new(GREEN_COLOR, 70) : color.new(RED_COLOR, 70)
    # cloudcolour2 = mashort2 >= malong2 ? color.new(GREEN_COLOR, 65) : color.new(RED_COLOR, 65)
    # cloudcolour3 = mashort3 >= malong3 ? color.new(GREY_COLOR, 70) : color.new(GREY_COLOR, 70)
    # cloudcolour4 = mashort4 >= malong4 ? color.new(BLUE_COLOR, 65) : color.new(ORANGE_COLOR, 65)
    # cloudcolour5 = mashort5 >= malong5 ? color.new(#05bed5, 65) : color.new(#e65100, 65)
    # //03abc1

    # mashortcolor1 = mashort1 >= mashort1[1] ? color.olive : color.maroon
    # mashortcolor2 = mashort2 >= mashort2[1] ? color.olive : color.maroon
    # mashortcolor3 = mashort3 >= mashort3[1] ? color.olive : color.maroon
    # mashortcolor4 = mashort4 >= mashort4[1] ? color.olive : color.maroon
    # mashortcolor5 = mashort5 >= mashort5[1] ? color.olive : color.maroon

    # mashortline1 = plot(ema1 ? mashort1 : na, color=showLine ? mashortcolor1 : na, linewidth=1, offset=emacloudleading, title='Short Leading EMA1')
    # mashortline2 = plot(ema2 ? mashort2 : na, color=showLine ? mashortcolor2 : na, linewidth=1, offset=emacloudleading, title='Short Leading EMA2')
    # mashortline3 = plot(ema3 ? mashort3 : na, color=showLine ? mashortcolor3 : na, linewidth=1, offset=emacloudleading, title='Short Leading EMA3')
    # mashortline4 = plot(ema4 ? mashort4 : na, color=showLine ? mashortcolor4 : na, linewidth=1, offset=emacloudleading, title='Short Leading EMA4')
    # mashortline5 = plot(ema5 ? mashort5 : na, color=showLine ? mashortcolor5 : na, linewidth=1, offset=emacloudleading, title='Short Leading EMA5')

    # malongcolor1 = malong1 >= malong1[1] ? color.green : color.red
    # malongcolor2 = malong2 >= malong2[1] ? color.green : color.red
    # malongcolor3 = malong3 >= malong3[1] ? color.green : color.red
    # malongcolor4 = malong4 >= malong4[1] ? color.green : color.red
    # malongcolor5 = malong5 >= malong5[1] ? color.green : color.red

    # malongline1 = plot(ema1 ? malong1 : na, color=showLine ? malongcolor1 : na, linewidth=3, offset=emacloudleading, title='Long Leading EMA1')
    # malongline2 = plot(ema2 ? malong2 : na, color=showLine ? malongcolor2 : na, linewidth=3, offset=emacloudleading, title='Long Leading EMA2')
    # malongline3 = plot(ema3 ? malong3 : na, color=showLine ? malongcolor3 : na, linewidth=3, offset=emacloudleading, title='Long Leading EMA3')
    # malongline4 = plot(ema4 ? malong4 : na, color=showLine ? malongcolor4 : na, linewidth=3, offset=emacloudleading, title='Long Leading EMA4')
    # malongline5 = plot(ema5 ? malong5 : na, color=showLine ? malongcolor5 : na, linewidth=3, offset=emacloudleading, title='Long Leading EMA5')

    # fill(mashortline1, malongline1, color=cloudcolour1, title='MA Cloud1')
    # fill(mashortline2, malongline2, color=cloudcolour2, title='MA Cloud2')
    # fill(mashortline3, malongline3, color=cloudcolour3, title='MA Cloud3')
    # fill(mashortline4, malongline4, color=cloudcolour4, title='MA Cloud4')
    # fill(mashortline5, malongline5, color=cloudcolour5, title='MA Cloud5')


    # // store variables for selling and buying.
    # start = false  // trigger for showing the alerts
    # var state = false
    # // this is a permanent signal.
    # var buy_signal = false

    # shortTrend = math.min(mashort1, malong1)
    # mediumTrend = math.max(mashort4, malong4)


    # // figure out a way to add an alert after each day so like a reset.
    # bool newDay = ta.change(time("D"))
    # var bool highInterval = timeframe.ismonthly or timeframe.isweekly or timeframe.isdaily
    # if newDay and not highInterval
    #     start := true

    # // bullish
    # if mashort1 >= malong1 and shortTrend >= mediumTrend
    #     buy_signal := true
    #     if state == false
    #         // start hedge
    #         state := true
    #         start := true
    #         start
    # else if shortTrend < mediumTrend
    #     buy_signal := false
    #     if state == true
    #         state := false
    #         start := true
    #         start

    # _buying_trigger = state and start
    # _selling_trigger = state == false and start

    # // Add pins for buying and selling.
    # plotshape(showLong and _buying_trigger, style=shape.triangleup, size=size.normal, color=color.new(color.green, 0), text='Go Long', title='Go Long', location=location.belowbar)
    # plotshape(showShort and _selling_trigger, style=shape.triangledown, size=size.normal, color=color.new(color.red, 0), text='Go Short', title='Go Short')

    # alertcondition(_buying_trigger, title='Go Long', message='Go Long')
    # alertcondition(_selling_trigger, title='Go Short', message='Go Short')

    # // Turn these on for strategy tester when we can do hedging with pine script
    # // strategy.entry(id="EL", direction=strategy.long, when=_buying_trigger and strategy.position_size == 0)
    # // strategy.close(id="EL", when=_selling_trigger and strategy.position_size != 0)

#region imports
from AlgorithmImports import *
from collections import deque
from scipy import stats
import talib
from numpy import mean, array
#endregion

# Good indicator template: https://www.quantconnect.com/forum/discussion/12691/python-indicator-template/p1
# I did not use it here but it should derive from.

# Use like this:
# 
# self.spy = self.AddEquity("SPY", Resolution.Daily).Symbol        
# NOT SURE WHERE TO PUT THE EXTRA PARAMETERS LIKE SECURITY AND ALGORITHM§
# 1. in this first try i'm sending the algorithm when creating it.
# self.squeeze = TTMSqueezePro("squeeze", 21)
# self.RegisterIndicator(self.spy, self.squeeze, Resolution.Daily)
# history = self.History(self.spy, 21, Resolution.Daily)
# self.squeeze.Warmup(history)

# TODO: there is a problem with the values being one day late. I'm not sure if it's because of how we close it but it might be the daily period.

class TTMSqueezePro(PythonIndicator):
    Squeeze = 0 # like value this is the second part of the indicator. 

    # //BOLLINGER BANDS
    BB_mult = 2.0 # input.float(2.0, "Bollinger Band STD Multiplier")
    # //KELTNER CHANNELS
    KC_mult_high = 1.0 # input.float(1.0, "Keltner Channel #1")
    KC_mult_mid = 1.5 # input.float(1.5, "Keltner Channel #2")
    KC_mult_low = 2.0 # input.float(2.0, "Keltner Channel #3")

    SQZ_COLORS = ['green', 'black', 'red', 'orange']

    # according to this example we don't need to pass security and algo as that
    # will be passed with RegisterIndicator.
    # https://github.com/QuantConnect/Lean/blob/b9d3d999170f385e2371fc3fef1823f2ddd4c83b/Algorithm.Python/CustomWarmUpPeriodIndicatorAlgorithm.py
    
    def __init__(self, name, length = 20):
        # default indicator definition
        super().__init__()
        self.Name = name
        self.Value = 0
        self.Time = datetime.min
        self.Squeeze = 0

        # set automatic warmup period
        self.WarmUpPeriod = length * 3

        self.length = length
        self.queue = deque(maxlen=self.length)
        self.queueMean = deque(maxlen=self.length)
        self.queueSqz = deque(maxlen=self.length)

        # define the base indicators to use
        self.BB = BollingerBands(self.length, self.BB_mult)
        self.KCHigh = KeltnerChannels(self.length, self.KC_mult_high)
        self.KCMid = KeltnerChannels(self.length, self.KC_mult_mid)
        self.KCLow = KeltnerChannels(self.length, self.KC_mult_low)

        self.MAX = Maximum(self.length)
        self.MIN = Minimum(self.length)
        self.SMA = SimpleMovingAverage('SMA', self.length)

    @property
    def IsReady(self) -> bool:
        # it's ready when:
        # - we have enough data to calculate the momentum oscilator value
        # - we have enough data to calculate the squeeze data
        return (len(self.queueMean) >= self.length) and self.BB.IsReady and self.KCHigh.IsReady and self.KCMid.IsReady and self.KCLow.IsReady

    def ManualUpdate(self, input) -> bool:
        self.Update(input)
        if self.IsReady:
            self.Current = IndicatorDataPoint(input.Symbol, input.Time, self.Value)
        return self.IsReady

    def Update(self, input) -> bool:
        # update all the indicators with the new data
        dataPoint = IndicatorDataPoint(input.Symbol, input.Time, input.Close)
        self.BB.Update(dataPoint)
        self.SMA.Update(dataPoint)
        # Feed into the Max and Min indicators the highest and lowest values only
        self.MAX.Update(IndicatorDataPoint(input.Symbol, input.Time, input.High))
        self.MIN.Update(IndicatorDataPoint(input.Symbol, input.Time, input.Low))
        # Keltner channels indicators
        self.KCHigh.Update(input)
        self.KCMid.Update(input)
        self.KCLow.Update(input)

        # Calculate the mom oscillator only after we get the proper amount of values for the array.
        if len(self.queueMean) >= self.length:
            self.Time = input.Time
            self.Value = self.MomOscillator()
            # self.Current = IndicatorDataPoint(input.Symbol, input.Time, self.Value)
            # self.OnUpdated(self.Current)
            data = IndicatorDataPoint(input.Symbol, input.Time, self.Value)
            if len(self.queue) > 0 and data.Time == self.queue[0].Time:
                self.queue[0] = data
            else:
                self.queue.appendleft(data)

        # calculate momentum oscilator.
        if self.MAX.IsReady and self.MIN.IsReady and self.SMA.IsReady:
            data = IndicatorDataPoint(input.Symbol, input.Time, self.MeanPrice(input.Close))
            if len(self.queueMean) > 0 and data.Time == self.queueMean[0].Time:
                self.queueMean[0] = data
            else:
                self.queueMean.appendleft(data)
        
        # Add the value and sqz status to a queue so we can check later if
        # we switched status recently.    
        if self.BB.IsReady and self.KCHigh.IsReady and self.KCMid.IsReady and self.KCLow.IsReady:
            self.Squeeze = self.SqueezeValue()
            data = IndicatorDataPoint(input.Symbol, input.Time, self.Squeeze)
            if len(self.queueSqz) > 0 and data.Time == self.queueSqz[0].Time:
                self.queueSqz[0] = data
            else:
                self.queueSqz.appendleft(data)

        return self.IsReady
    
    def KC_basis(self):
        return self.sma.Current.Value

    def BB_basis(self):
        # return self.sma.Current.Value
        return self.BB.MiddleBand.Current.Value

    def BB_upper(self): 
        return self.BB.UpperBand.Current.Value
    
    def BB_lower(self):
        return self.BB.LowerBand.Current.Value

    def KC_upper_high(self):
        return self.KCHigh.UpperBand.Current.Value
    
    def KC_lower_high(self):
        return self.KCHigh.LowerBand.Current.Value
    
    def KC_upper_mid(self):
        return self.KCMid.UpperBand.Current.Value
    
    def KC_lower_mid(self):
        return self.KCMid.LowerBand.Current.Value
    
    def KC_upper_low(self):
        return self.KCLow.UpperBand.Current.Value
    
    def KC_lower_low(self):
        return self.KCLow.LowerBand.Current.Value
    
    # //SQUEEZE CONDITIONS
    def NoSqz(self):
        return self.BB_lower() < self.KC_lower_low() or self.BB_upper() > self.KC_upper_low() # NO SQUEEZE: GREEN
    
    def LowSqz(self):
        return self.BB_lower() >= self.KC_lower_low() or self.BB_upper() <= self.KC_upper_low() # LOW COMPRESSION: BLACK
    
    def MidSqz(self):
        return self.BB_lower() >= self.KC_lower_mid() or self.BB_upper() <= self.KC_upper_mid() # MID COMPRESSION: RED
    
    def HighSqz(self):
        return self.BB_lower() >= self.KC_lower_high() or self.BB_upper() <= self.KC_upper_high() # HIGH COMPRESSION: ORANGE

    # //SQUEEZE DOTS COLOR
    # sq_color = HighSqz ? color.new(color.orange, 0) : MidSqz ? color.new(color.red, 0) : LowSqz ? color.new(color.black, 0) : color.new(color.green, 0)
    def SqueezeColor(self):
        if self.HighSqz():
            return 'orange'
        elif self.MidSqz():
            return 'red'
        elif self.LowSqz():
            return 'black'
        else:
            return 'green'

    def SqueezeValue(self):
        return self.SQZ_COLORS.index(self.SqueezeColor())

    def MomentumHistogramColor(self):
        bullish = Color.Aqua if self.queue[0].Value > self.queue[1].Value else Color.Blue
        bearish = Color.Red if self.queue[0].Value < self.queue[1].Value else Color.Yellow
        return bullish if self.Bullish() else bearish

    def Bullish(self):
        return self.queue[0].Value > 0

    def Bearish(self):
        return self.queue[0].Value <= 0

    # This calculates the mean price value that we'll add to a series type/array and we'll use to 
    # calculate the momentum oscilator (aka linear regression)
    def MeanPrice(self, price):
        return price - mean([mean([self.MAX.Current.Value, self.MIN.Current.Value]), self.SMA.Current.Value])

    def LosingMomentum(self, maxDays = 2):
        # reverse the momentum values
        slicedQueue = list(self.queue)[:maxDays]
        # if absolute then we also check the momentum `color`
        # go over the reversed values and make sure they are decreasing
        return all(earlier.Value > later.Value for later, earlier in zip(slicedQueue, slicedQueue[1:]))

    def GainingMomentum(self, maxDays = 2):
        # reverse the momentum values
        slicedQueue = list(self.queue)[:maxDays]
        # if absolute then we also check the momentum `color`
        # go over the reversed values and make sure they are increasing
        return all(earlier.Value < later.Value for later, earlier in zip(slicedQueue, slicedQueue[1:]))

    def SqueezeChange(self, toColor = 'green'):
        earlier = self.queueSqz[1]
        last = self.queueSqz[0]
        colorIndex = self.SQZ_COLORS.index(toColor)
        return last.Value == colorIndex and earlier.Value != last.Value

    def SqueezeDuration(self, over = 2):
        # pick last `over` days but today/current value
        slicedQueue = list(self.queueSqz)[1:over+1]
        colorIndex = self.SQZ_COLORS.index('green')
        # go over the reversed values and make sure they are increasing
        return all(val.Value != colorIndex for val in slicedQueue)

    def MomOscillator(self):
        '''
        //MOMENTUM OSCILLATOR
        mom = ta.linreg(close - math.avg(math.avg(
                                                  ta.highest(high, length), 
                                                  ta.lowest(low, length)
                                                  ), 
                                         ta.sma(close, length)
                                        ), 
                        length, 0)

        https://www.quantconnect.com/forum/discussion/10168/least-squares-linear-regression/p1/comment-28627
        https://www.tradingview.com/pine-script-reference/v4/#fun_linreg
        
        // linreg = intercept + slope * (length - 1 - offset)
        // where length is the y argument, 
        // offset is the z argument, 
        // intercept and slope are the values calculated with the least squares method on source series (x argument).
        -> linreg(source, length, offset) → series[float]
        '''
        # x = [range(len(self.queueMean))]
        # y = self.queueMean

        # slope, intercept = stats.linregress(x, y)[0], stats.linregress(x, y)[1]
        # linreg = intercept + slope * (self.length - 1)

        # we need to reverse the queue in order to get the most recent regression
        series = array([m.Value for m in reversed(self.queueMean)])
        size = len(series)
        # considering we are not taking a shorter regression value we are going to get the last value
        # of the returned array as that is where the linar regression value sits the rest are `nan`
        linreg = talib.LINEARREG(series, size)[size - 1]

        return linreg

    def Warmup(self, history):
        for index, row in history.iterrows():
            self.Update(row)

#region imports
from AlgorithmImports import *
from .RipsterClouds import RipsterClouds
from .TTMSqueezePro import TTMSqueezePro
#endregion


# Your New Python File
#region imports
from AlgorithmImports import *
#endregion

class MarketHours:
    def __init__(self, algorithm, symbol):
        self.algorithm = algorithm
        self.hours = algorithm.Securities[symbol].Exchange.Hours
        
    def get_CurrentOpen(self):
        return self.hours.GetNextMarketOpen(self.algorithm.Time, False)

    def get_CurrentClose(self):
        return self.hours.GetNextMarketClose(self.get_CurrentOpen(), False)
#region imports
from AlgorithmImports import *
from itertools import groupby
from QuantConnect.Logging import *
from MarketHours import MarketHours
from PortfolioHandler import Handler
from PortfolioHandler.OStrategies import Straddle
#endregion

# TODO:
# - force it to work once an hour
# - force it to work every 5 minutes
# - force it to work once a day
# - check if LEAP is properly rolled so it does not pick a too close one. Ideal is 365 days DTE!
# - try to roll for a credit including the LEAP value
# - when monitoring not just close the position also roll and leave the scanner just for opening positions. (not expected to cause any results if we include credit checks)
# - 

# TODO:
# Replicate the result from this spreadsheet: https://docs.google.com/spreadsheets/d/1-Pr-_arX_mdM2O_oDMHnhFZNRBti4N07/edit#gid=2038006255
# Details of best result
# Run Seq.	Run Date    Code Version	Portfolio Return	CAGR	Percent Change	Max Drawdown (%)	Max Drawdown ($)	Opening Trades	Winners	Losers	Avg Gain (Winners)	Avg Loss (Losers)   Geometric Sharpe Ratio	Baseline 
# v2.0038	8/25/2020	2.1	            962.83%	            32.81%	91.54%	        -36.35%	            -$282,701.00	    322	            211	    111	    $13,975.38	        -$17,891.65	        0.955	                Loss 

# Environmental Backtest Settings				                                Sequence Parameters	
# Start Date	End Date	Initial Cash	Fill Orders	    Close Orders		Allocation	Straddle Quantity		
# 4/2/2012	    7/31/2020	$100,000	    Mid Price	    Mid Price		    0.50	    0		                     

# DTE Threshold	Price Threshold     Open DTE Min	Open DTE Max	Price Var Min	Price Var Max		
# 35	        0.065	            335	            425	            -$0.50	        $0.50		 

# DTE Threshold	  Loss Limit Threshold	  Price Call Threshold	  Price Put Threshold	 Open DTE Min	Open DTE Max	DTE Max Expansion	Open DTE Multiplier	    Price Var Min	Price Var Max	Price Markup
# 1	              -3.25	                  0.050	                  0.050	                 5	            15	            30	                1.05	                -$0.50	        $0.50	        $0.10		

# FINAL FORM: seems like short rolling works great it's the LEAP that gives too little profit (is that the way it needs to be??!)

# THIS DOES NOT SEEM TO WORK!!!
class CustomBuyingPowerModel(BuyingPowerModel):
    # def GetMaximumOrderQuantityForTargetBuyingPower(self, parameters):
    #     quantity = super().GetMaximumOrderQuantityForTargetBuyingPower(parameters).Quantity
    #     quantity = np.floor(quantity / 100) * 100
    #     return GetMaximumOrderQuantityResult(quantity)

    def HasSufficientBuyingPowerForOrder(self, parameters):
        return HasSufficientBuyingPowerForOrderResult(True)

class MilkTheCowAlphaModel(AlphaModel):
    algorithm = None

    def __init__(self, algorithm, ticker, option):
        self.ticker = ticker
        self.option = option
        self.algorithm = algorithm
        self.symbol = algorithm.AddEquity(self.ticker)
        self.marketHours = MarketHours(algorithm, self.ticker)
        self.portfolio = Handler(self.algorithm)

        # self.symbol.SetBuyingPowerModel(CustomBuyingPowerModel())

        # TEST default expirations:
        # self.LeapExpiration = ExpirationRange(335, 425)
        # self.ShortExpiration = ExpirationRange(5, 15)
        # TEST rolling expirations:
        # self.LeapExpiration = ExpirationRange(335, 425)
        # self.ShortExpiration = ExpirationRange(5, 30)
        
        self.LeapExpiration = ExpirationRange(335, 425)
        self.ShortExpiration = ExpirationRange(5, 30)

        self.Log = Logger(self.algorithm)

        self.Credit = TradeCredit()

    def Update(self, algorithm, data):
        insights = []
        if algorithm.IsWarmingUp: return insights

        if self.ticker not in data.Keys: return insights
        
        self.algorithm.benchmark.PrintBenchmark()

        if self.marketHours.get_CurrentClose().hour - 2 > self.algorithm.Time.hour > self.marketHours.get_CurrentOpen().hour + 2:
            if self.algorithm.Time.minute == 30:
                insights.extend(self.Monitor(data))
            if self.algorithm.Time.minute == 5:
                insights.extend(self.Scanner(data))

        # if self.algorithm.Time.hour > self.marketHours.get_CurrentOpen().hour + 4 and self.algorithm.Time.minute == 15:
        #     insights.extend(self.Monitor(data))

        # if 11 > self.algorithm.Time.hour >= 10 and (self.algorithm.Time.minute == 15 or self.algorithm.Time.minute == 30 or self.algorithm.Time.minute == 45):
        #     insights.extend(self.Scanner(data))

        return Insight.Group(insights)

    def Monitor(self, data):
        
        insights = []
        stockPrice = self.algorithm.Securities[self.ticker].Price
        longStraddles = self.portfolio.Straddles(self.ticker, expiration = self.LeapExpiration.ToArr(), short = False)
        shortStraddles = self.portfolio.Straddles(self.ticker, expiration = self.ShortExpiration.ToArr(), short = True)

        #### EXIT RULES
        # Exiting the strategy is defined as closing both straddles and is triggered by one of two conditions.
        # - Long LEAP Straddle DTE < 335
        # - Short Straddle indicates over a 325% loss; anything less should just be adjusted, see below.
        if len(longStraddles) > 0 and len(shortStraddles) > 0:
            longStraddle = longStraddles[0]
            shortStraddle = shortStraddles[0]
            close = False
            # if longStraddle.ExpiresIn(self.algorithm) < 335:
            #     close = True
            #     self.Log.Add("EXIT - longStraddle {}: expires in {} < 335".format(longStraddle.ToString(self.algorithm), longStraddle.ExpiresIn(self.algorithm) ))
            if shortStraddle.UnrealizedProfit() <= -325:
                close = True
                self.Log.Add("EXIT - shortStraddle {}: unrealized profit {} <= -335".format(shortStraddle.ToString(self.algorithm), shortStraddle.UnrealizedProfit() ))

            if close:
                # I'm selling the leap
                self.Credit.Sell(leap = longStraddle.AskPrice(self.algorithm))
                # And buying the short
                self.Credit.Buy(short = shortStraddle.AskPrice(self.algorithm))
                self.Log.Add("EXIT - with credit {} / leap(${}) short(${})".format(self.Credit.ToString(), longStraddle.AskPrice(self.algorithm), shortStraddle.AskPrice(self.algorithm)))
                return [
                    Insight.Price(longStraddle.Call.Symbol, Resolution.Minute, 15, InsightDirection.Flat),
                    Insight.Price(longStraddle.Put.Symbol, Resolution.Minute, 15, InsightDirection.Flat),
                    Insight.Price(shortStraddle.Call.Symbol, Resolution.Minute, 15, InsightDirection.Flat),
                    Insight.Price(shortStraddle.Put.Symbol, Resolution.Minute, 15, InsightDirection.Flat)
                ]
        
        self.Log.Print()

        #### LONG LEAP STRADDLE
        # ##### Standard Roll Triggers:
        # - Less than 335 days expiration (DTE).
        # - When underlying price moves more than 6.5% from strike price.
        # - When profit on LEAP straddle is > 0.5%

        # __Note: IV Opportunity Rolling no longer recommended.__
        # __When rolling, select strikes ATM and DTE = 365 +/- 30 (335 – 395).__
        if len(longStraddles) > 0:
            longStraddle = longStraddles[0]
            close = False
            if longStraddle.ExpiresIn(self.algorithm) < 335:
                close = True
                self.Log.Add("ROLL LEAP - longStraddle {}: expires in {} < 335".format(longStraddle.ToString(self.algorithm), longStraddle.ExpiresIn(self.algorithm) ))
            if (longStraddle.Strike() / 1.065) > stockPrice or stockPrice > (longStraddle.Strike() * 1.065):
                close = True
                self.Log.Add("ROLL LEAP - longStraddle {0}: strike / 1.065({1}) > {2} or {2} > strike * 1.065({3})".format(longStraddle.ToString(self.algorithm),  (longStraddle.Strike() / 1.065), stockPrice, (longStraddle.Strike() * 1.065)))
            # if longStraddle.UnrealizedProfit() > 0.5:
            #     close = True
            #     self.Log.Add("ROLL LEAP - longStraddle {}: unrealized profit {} > 0.5%".format(longStraddle.ToString(self.algorithm), longStraddle.UnrealizedProfit() ))
            
            if close:
                # I'm selling the leap
                self.Credit.Sell(leap = longStraddle.AskPrice(self.algorithm))
                self.Log.Add("ROLL LEAP - sell trigger with credit {} / leap(${})".format(self.Credit.ToString(), longStraddle.AskPrice(self.algorithm)))
                insights.extend(
                    [
                        Insight.Price(longStraddle.Call.Symbol, Resolution.Minute, 15, InsightDirection.Flat),
                        Insight.Price(longStraddle.Put.Symbol, Resolution.Minute, 15, InsightDirection.Flat)
                    ]
                )
        self.Log.Print()

        # #### SHORT STRADDLE
        # ##### Standard Roll Triggers:
        # - 1 day to expiration (DTE).
        # - When underlying price moves more than 5% from strike price.
        # - 2-5 days to expiration (DTE) AND spot price is $1.00 or less away from the strike price.
        # - When profit on short straddle is > 20%

        # __When rolling, select strikes ATM and select the minimum DTE to yield a net credit, ideally 7 DTE, but with a maximum DTE of 30.__

        # > - LEAP: Roll when the underlying price moves more than 6.5% from strike price.
        # >    - When rolling, select strikes ATM and DTE 335-425 days out.
        # > - Short: Roll 1 day prior to expiration or when underlying price moves more than 5% from the strike price.
        # >    - When rolling select strikes ATM and select the minimum DTE to yield a net credit (max of 30 DTE).

        if len(shortStraddles) > 0:
            shortStraddle = shortStraddles[0]
            close = False
            if shortStraddle.ExpiresIn(self.algorithm) <= 1:
                close = True
                self.Log.Add("ROLL SHORT - shortStraddle {}: expires in {} <= 1".format(shortStraddle.ToString(self.algorithm), shortStraddle.ExpiresIn(self.algorithm) ))
            if (shortStraddle.Strike() / 1.05) > stockPrice or stockPrice > (shortStraddle.Strike() * 1.05):
                close = True
                self.Log.Add("ROLL SHORT - shortStraddle {0}: strike / 1.05({1}) > {2} or {2} > strike * 1.05({3})".format(shortStraddle.ToString(self.algorithm),  (shortStraddle.Strike() / 1.05), stockPrice, (shortStraddle.Strike() * 1.05)))
            if 2 <= shortStraddle.ExpiresIn(self.algorithm) <= 5 and ((shortStraddle.Strike() - 1) > stockPrice or stockPrice > (shortStraddle.Strike() + 1)):
                close = True
                self.Log.Add("ROLL SHORT - shortStraddle {0}: strike - 1 ({1}) > {2} or {2} > strike + 1({3})".format(shortStraddle.ToString(self.algorithm),  (shortStraddle.Strike() - 1), stockPrice, (shortStraddle.Strike() + 1)))
            if shortStraddle.UnrealizedProfit() > 20:
                close = True
                self.Log.Add("ROLL SHORT - shortStraddle {}: unrealized profit {} > 20%".format(shortStraddle.ToString(self.algorithm), shortStraddle.UnrealizedProfit() ))
            
            if close:
                # And buying the short
                self.Credit.Buy(short = shortStraddle.AskPrice(self.algorithm))
                self.Log.Add("ROLL SHORT - buy trigger with credit {} / short(${})".format(self.Credit.ToString(), shortStraddle.AskPrice(self.algorithm)))
                insights.extend(
                    [
                        Insight.Price(shortStraddle.Call.Symbol, Resolution.Minute, 15, InsightDirection.Flat),
                        Insight.Price(shortStraddle.Put.Symbol, Resolution.Minute, 15, InsightDirection.Flat)
                    ]
                )
        self.Log.Print()

        return insights

    def Scanner(self, data):
        insights = []

        lenShortStraddle = len(self.portfolio.Straddles(self.ticker, expiration = [0, self.ShortExpiration.Stop], short = True))
        lenLeapStraddle = len(self.portfolio.Straddles(self.ticker, expiration = self.LeapExpiration.ToArr(), short = False))
        # SCAN LEAP
        # - if no LEAP
        if lenLeapStraddle == 0:
            longStraddle = self.__FindStraddle(data, expiration = self.LeapExpiration, idealDTE=365)
            self.Log.Add("SCANNER LEAP - Trying to find a LEAP")
            if longStraddle:
                self.Credit.Buy(leap = longStraddle.AskPrice(self.algorithm))
                self.Log.Add("SCANNER LEAP - buying LEAP {} with credit {} / ${}".format(longStraddle.ToString(self.algorithm), self.Credit.ToString(), longStraddle.AskPrice(self.algorithm)) )
                insights.extend([
                    Insight.Price(longStraddle.Call, Resolution.Minute, 15, InsightDirection.Up),
                    Insight.Price(longStraddle.Put, Resolution.Minute, 15, InsightDirection.Up),
                ])
        self.Log.Print()
        # SCAN SHORT
        # - if LEAP and no SHORT
        # First open the leapStraddle and after that the shortStraddle!
        if lenShortStraddle == 0 and lenLeapStraddle > 0:
            shortStraddle = self.__FindStraddle(data, expiration = self.ShortExpiration, minCredit = self.Credit.LastShort * 1.3)
            self.Log.Add("SCANNER SHORT - Trying to find a SHORT")
            if shortStraddle: 
                self.Credit.Sell(short = shortStraddle.AskPrice(self.algorithm))
                self.Log.Add("SCANNER SHORT - selling SHORT {} with credit {} / ${}".format(
                    shortStraddle.ToString(self.algorithm), self.Credit.ToString(), shortStraddle.AskPrice(self.algorithm) ) )
                insights.extend([
                    Insight.Price(shortStraddle.Call, Resolution.Minute, 15, InsightDirection.Down),
                    Insight.Price(shortStraddle.Put, Resolution.Minute, 15, InsightDirection.Down),
                ])
        self.Log.Print()

        return insights

    def __FindStraddle(self, data, expiration, minCredit = 0.0, idealDTE = None):
        put = None
        call = None
        stockPrice = self.algorithm.Securities[self.ticker].Price

        contracts = self.algorithm.OptionChainProvider.GetOptionContractList(self.ticker, self.algorithm.Time.date())
        if len(contracts) == 0 : return None
        
        # # only tradable contracts
        # # !!IMPORTANT!!: to escape the error `Backtest Handled Error: The security with symbol 'SPY 220216P00425000' is marked as non-tradable.`
        contracts = [x for x in contracts if self.algorithm.Securities[x.ID.Symbol].IsTradable]
        
        contracts = [i for i in contracts if expiration.Start <= (i.ID.Date.date() - self.algorithm.Time.date()).days <= expiration.Stop]

        if not contracts: return None
        
        contracts = sorted(contracts, key = lambda x: x.ID.Date, reverse = False)
        # Pick all the ATM contracts per day
        ATMcontracts = []
        for expiry, g in groupby(contracts, lambda x: x.ID.Date):
            # Sort by strike as grouping without sorting does not work.
            dateGroup = sorted(list(g), key = lambda x: x.ID.StrikePrice, reverse = False)
            strikeGroup = []
            for strike, sg in groupby(dateGroup, lambda x: x.ID.StrikePrice):
                sg = list(sg)
                # only select groups that have 2 contracts
                if len(sg) == 2:
                    # assign if (doing basically a min/sorting function):
                    # - no group is added in the strike group
                    # - previous strike price - stock price difference is bigger than current strike price - stock price difference
                    if len(strikeGroup) == 0 or (abs(stockPrice - strikeGroup[0].ID.StrikePrice) > abs(stockPrice - strike)):
                        strikeGroup = sg

            GroupPut  = next(filter(lambda option: option.ID.OptionRight == OptionRight.Put, strikeGroup), None)
            GroupCall = next(filter(lambda option: option.ID.OptionRight == OptionRight.Call, strikeGroup), None)

            ATMcontracts.extend([GroupCall, GroupPut])
        contracts = ATMcontracts

        # add all the option contracts so we can access all the data.
        for c in contracts:
            self.algorithm.AddOptionContract(c, Resolution.Minute)

        # WARNING!! we have to select AskPrice like this in a separate list because otherwise it seems like the filtering might be too fast or the pointers are messed
        # up in python that by adding the option contract right above this could cause issues where AskPrice might be 0!!
        puts = [[self.algorithm.Securities[c.Value].AskPrice, c] for c in contracts if c.ID.OptionRight == OptionRight.Put]
        put = min(puts, key=lambda x: abs(x[0] - minCredit / 2))[1]
        # only select calls that have the same date as our put above for extra insurance that it's a straddle.
        calls = [[self.algorithm.Securities[c.Value].AskPrice, c] for c in contracts if c.ID.OptionRight == OptionRight.Call and c.ID.Date == put.ID.Date]
        call = min(calls, key=lambda x: abs(x[0] - minCredit / 2))[1]
        
        # if we have an ideal DTE defined then try and compare that with the one selected
        if idealDTE != None and self.__ExpiresIn(put) < idealDTE :
            idealPut = min(puts, key=lambda x: abs((x[1].ID.Date.date() - self.algorithm.Time.date()).days - idealDTE))[1]
            idealCall = [c for c in contracts if c.ID.Date == idealPut.ID.Date and c.ID.OptionRight == OptionRight.Call][0]
            # minPremium = self.algorithm.Securities[call.Value].AskPrice + self.algorithm.Securities[put.Value].AskPrice
            # idealPremium = self.algorithm.Securities[idealCall.Value].AskPrice + self.algorithm.Securities[idealPut.Value].AskPrice
            call = idealCall
            put = idealPut

        # self.algorithm.Securities[put].SetBuyingPowerModel(CustomBuyingPowerModel())
        # self.algorithm.Securities[call].SetBuyingPowerModel(CustomBuyingPowerModel())

        if not put or not call: return None
        if put.ID.StrikePrice != call.ID.StrikePrice: return None

        return Straddle(put, call)

    # Method that returns a boolean if the security expires in the given days
    # @param security [Security] the option contract
    def __ExpiresIn(self, security):
        return (security.ID.Date.date() - self.algorithm.Time.date()).days

    def __SignalDeltaPercent(self):
        return (self.indicators['MACD'].Current.Value - self.indicators['MACD'].Signal.Current.Value) / self.indicators['MACD'].Fast.Current.Value

class ExpirationRange:
    def __init__(self, start, stop):
        self.Start  = start
        self.Stop   = stop

    def ToArr(self):
        return [self.Start, self.Stop]

# Class to hold the credit of our trade so we can separate LEAP profit/credit from short profit but also combine them when needed.
class TradeCredit:
    Value = 0
    Leap  = 0
    Short = 0
    LastShort = 0
    LastLeap  = 0
    
    # When we buy something we remove from credit as we are paying from balance to get the options.
    def Buy(self, short = 0, leap = 0):
        self.Short -= short
        self.Leap  -= leap

        if short != 0: self.LastShort = short

        self.Value -= short + leap
        return self.Value
    
    # When we are selling we add to credit as we are receiving premium for selling them.
    def Sell(self, short = 0, leap = 0):
        self.Short += short
        self.Leap  += leap
        
        if leap != 0: self.LastLeap = leap

        self.Value += short + leap
        return self.Value

    def ToString(self):
        return "Total: ${} / Short: ${} (last ${}) / Leap: ${}".format(round(self.Value, 2) * 100, round(self.Short, 2) * 100, round(self.LastShort, 2), round(self.Leap, 2) * 100)

# Make this logger class so we can print logging messages in section for easier read.
class Logger:
    Messages = []
    Algorithm = None

    def __init__(self, algorithm):
        self.Algorithm = algorithm

    def Add(self, message):
        self.Messages.append(message)

    def Print(self):
        if len(self.Messages) > 0:
            self.Algorithm.Log("------***------")
            for m in self.Messages:
                self.Algorithm.Log(m)
            self.Algorithm.Log("------|||------")
            self.Messages = []
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from AlgorithmImports import *
from Selection.OptionUniverseSelectionModel import OptionUniverseSelectionModel

class MilkTheCowOptionSelectionModel(OptionUniverseSelectionModel):
    '''Creates option chain universes that select only the two week earliest expiry call contract
    and runs a user defined optionChainSymbolSelector every day to enable choosing different option chains'''
    def __init__(self, select_option_chain_symbols, expirationRange = [7, 30]):
        super().__init__(timedelta(1), select_option_chain_symbols)
        self.expirationRange = expirationRange

    def Filter(self, filter):
        '''Defines the option chain universe filter'''
        return (filter.Strikes(-2, +2)
                      .Expiration(self.expirationRange[0], self.expirationRange[1])
                      .IncludeWeeklys()
                      .OnlyApplyFilterAtMarketOpen())
from AlgorithmImports import *

class OptionsSpreadExecution(ExecutionModel):
    '''Execution model that submits orders while the current spread is tight.
       Note this execution model will not work using Resolution.Daily since Exchange.ExchangeOpen will be false, suggested resolution is Minute
    '''

    def __init__(self, acceptingSpreadPercent=0.005):
        '''Initializes a new instance of the SpreadExecutionModel class'''
        self.targetsCollection = PortfolioTargetCollection()
        
        # Gets or sets the maximum spread compare to current price in percentage.
        self.acceptingSpreadPercent = Math.Abs(acceptingSpreadPercent)
        self.executionTimeThreshold = timedelta(minutes = 10)
        self.openExecutedOrders = {}

    def Execute(self, algorithm, targets):
        '''Executes market orders if the spread percentage to price is in desirable range.
       Args:
           algorithm: The algorithm instance
           targets: The portfolio targets'''
           
        # update the complete set of portfolio targets with the new targets
        self.UniqueTargetsByStrategy(algorithm, targets)
        self.ResetExecutedOrders(algorithm)
    
        # for performance we check count value, OrderByMarginImpact and ClearFulfilled are expensive to call
        if self.targetsCollection.Count > 0:
            for target in self.targetsCollection.OrderByMarginImpact(algorithm):
                symbol = target.Symbol
                if not self.TimeToProcess(algorithm, symbol): continue
                
                # calculate remaining quantity to be ordered
                unorderedQuantity = OrderSizing.GetUnorderedQuantity(algorithm, target)
                
                # check order entry conditions
                if unorderedQuantity != 0:
                    # get security information
                    security = algorithm.Securities[symbol]
                    # TODO: check this against spreads.!!
                    # if we are selling or buying an option then pick a favorable price
                    # if we are trying to get out of the trade then execute at market price
                    # if (target.Quantity != 0 and self.SpreadIsFavorable(security)) or target.Quantity == 0:
                    stockPrice = security.Underlying.Price
                    algorithm.MarketOrder(symbol, unorderedQuantity, tag = "Current stock price {0}".format(stockPrice))
                    self.openExecutedOrders[symbol.Value] = algorithm.Time

            self.targetsCollection.ClearFulfilled(algorithm)

    def TimeToProcess(self, algorithm, symbol):
        # if we executed the market order less than the executionTimeThreshold then skip
        key = symbol.Value
        openOrders = algorithm.Transactions.GetOpenOrders(symbol)
        if key in self.openExecutedOrders.keys():
            if (self.openExecutedOrders[key] + self.executionTimeThreshold) > algorithm.Time:
                return False
            else:
                # cancel existing open orders for symbol and try again
                algorithm.Transactions.CancelOpenOrders(key, "The order did not fill in the expected threshold.")
                return True
        else:
            # Order was never processed for this Symbol.
            return True

    def ResetExecutedOrders(self, algorithm):
        # attempt to clear targets that have been filled later
        self.targetsCollection.ClearFulfilled(algorithm)
        # reset openExecutedOrders if no targets present
        if self.targetsCollection.Count == 0:
            self.openExecutedOrders = {}

    # TODO: improve this for insight Groups so we can do spreads
    def UniqueTargetsByStrategy(self, algorithm, targets):
        # check newly added targets for similar option strategies that have not been filled
        for target in targets:
            symbol = target.Symbol
            targetSecurity = algorithm.Securities[symbol]
            
            # TODO this does not work when we are trying to roll leap straddles and at the same time sell short straddles as they have the same quantity.
            if symbol.SecurityType == SecurityType.Option:
                # if an old strategy has not been filled then we are going to remove it and allow the new similar one to be tried.
                for t in self.targetsCollection:
                    tSecurity = algorithm.Securities[t.Symbol]
                    if (t.Symbol.SecurityType == symbol.SecurityType and \
                        tSecurity.Right == targetSecurity.Right and \
                        t.Quantity == target.Quantity and \
                        tSecurity.Expiry == targetSecurity.Expiry):
                        self.targetsCollection.Remove(t.Symbol)

            self.targetsCollection.Add(target)

    def SpreadIsFavorable(self, security):
        '''Determines if the spread is in desirable range.'''
        # Price has to be larger than zero to avoid zero division error, or negative price causing the spread percentage < 0 by error
        # Has to be in opening hours of exchange to avoid extreme spread in OTC period
        return security.Exchange.ExchangeOpen \
            and security.Price > 0 and security.AskPrice > 0 and security.BidPrice > 0 \
            and (security.AskPrice - security.BidPrice) / security.Price <= self.acceptingSpreadPercent
from AlgorithmImports import *
from OStrategies import *
import pickle
from itertools import chain
# Class that handles portfolio data. We have here any method that would search the portfolio for any of the contracts we need.
class Handler:

    def __init__(self, algo):
        self.algo = algo
        # Create a RollingWindow to store the last of the trades bids for selling options.
        self.lastTradeBid = 0

    # Returns all the covered calls of the specified underlying
    # @param underlying [String]
    # @param optionType [OptionRight.Call | OptionRight.Put]
    # @param maxDays [Integer] number of days in the future that the contracts are filtered by
    def UnderlyingSoldOptions(self, underlying, optionType, maxDays = 60):
        contracts = []
        for option in self.algo.Portfolio.Values:
            security = option.Security
            if (option.Type == SecurityType.Option and
                str(security.Underlying) == underlying and
                security.Right == optionType and
                option.Quantity < 0 and
                (security.Expiry.date() - self.algo.Time.date()).days < maxDays):
                contracts.append(option)
        return contracts

    def OptionStrategies(self, underlying, types = [OptionRight.Call, OptionRight.Put]):
        allContracts = {}
        # select all the puts/calls in our portfolio
        for option in self.algo.Portfolio.Values:
            security = option.Security
            if (option.Type == SecurityType.Option and
                security.Right in types and
                str(security.Underlying) == underlying and
                option.Quantity != 0):
                allContracts.setdefault(int(security.Expiry.timestamp()), []).append(option)

        return allContracts

    def Straddles(self, underlying, ignoreStored = False, expiration = [3, 750], short = None):
        allContracts = self.OptionStrategies(underlying)
        contracts = []

        for t, options in allContracts.items():
            # if we have 2 contracts and they are short
            if len(options) != 2:
                continue

            # - short = None: add straddle
            # - short = True and Quantity > 0: continue
            # - short = True and Quantity < 0: add short straddle
            # - short = False and Quantity > 0: add long straddle
            # - short = False and Quantity < 0: continue
            if short != None:
                if short == True and sum(o.Quantity for o in options) > 0:
                    continue
                if short == False and sum(o.Quantity for o in options) < 0:
                    continue

            # WARNING! THIS ASSUMES WE HAVE OPTIONS ON A CERTAIN DAY THAT ARE EITHER SOLD OR BOUGHT AND JUST ONCE SET PER
            # UNDERLYING. WE MIGHT HAVE TO UPDATE THIS
            # pick the put and the call
            Put  = next(filter(lambda option: option.Security.Right == OptionRight.Put, options), None)
            Call = next(filter(lambda option: option.Security.Right == OptionRight.Call, options), None)

            if not Put or not Call:
                continue

            # check expiration if it's in range.
            if expiration[1] < (Put.Security.Expiry.date() - self.algo.Time.date()).days < expiration[0]:
                continue

            # if it's a straddle (both strikes are the same)
            if Put.Security.StrikePrice == Call.Security.StrikePrice:
                contract = Straddle(Put, Call)
                if not ignoreStored and contract.StrategyKey() not in self.ReadTrades("Straddles"): continue
                contracts.append(contract)

        return contracts

    def SoldPuts(self, underlying, ignoreStored = False, expiration = [0, 30]):
        # select all the calls in our portfolio
        allContracts = self.OptionStrategies(underlying, [OptionRight.Put])
        contracts = []

        for t, puts in allContracts.items():
            # if it's more or less than 1 call in the group (per date) skip
            if len(puts) != 1:
                continue

            Put = puts[0]

            # if the quantity of the contracts is not sold skip
            if Put.Quantity >= 0:
                continue

            # check expiration if it's in range.
            if expiration[1] < (Put.Security.Expiry.date() - self.algo.Time.date()).days < expiration[0]:
                continue

            contract = SoldPut(Put)
            if not ignoreStored and contract.StrategyKey() not in self.ReadTrades("SoldPuts"): continue
            contracts.append(contract)

        return contracts

    def SoldCalls(self, underlying, ignoreStored = False, expiration = [0, 30]):
        # select all the calls in our portfolio
        allContracts = self.OptionStrategies(underlying, [OptionRight.Call])
        contracts = []

        for t, calls in allContracts.items():
            # if it's more or less than 1 call in the group (per date) skip
            if len(calls) != 1:
                continue

            Call = calls[0]

            # if the quantity of the contracts is not sold skip
            if Call.Quantity >= 0:
                continue

            # check expiration if it's in range.
            if expiration[1] < (Call.Security.Expiry.date() - self.algo.Time.date()).days < expiration[0]:
                continue

            contract = SoldCall(Call)
            if not ignoreStored and contract.StrategyKey() not in self.ReadTrades("SoldCalls"): continue
            contracts.append(contract)

        return contracts

    def Calls(self, underlying, ignoreStored = False, expiration = [0, 30]):
        # select all the calls in our portfolio
        allContracts = self.OptionStrategies(underlying, [OptionRight.Call])
        contracts = []

        for t, calls in allContracts.items():
            # if it's more or less than 1 call in the group (per date) skip
            if len(calls) != 1:
                continue

            Call = calls[0]

            # if the quantity of the contracts is sold skip
            if Call.Quantity <= 0:
                continue

            # check expiration if it's in range.
            if expiration[1] < (Call.Security.Expiry.date() - self.algo.Time.date()).days < expiration[0]:
                continue

            contract = OCall(Call)
            if not ignoreStored and contract.StrategyKey() not in self.ReadTrades("Calls"): continue
            contracts.append(contract)

        return contracts

    def BullPutSpreads(self, underlying, ignoreStored = False):
        # select all the puts in our portfolio
        allContracts = self.OptionStrategies(underlying, [OptionRight.Put])
        contracts = []

        # if we have 2 contracts per expiration then we have a put spread. Let's filter for bull put spreads now.
        # shortPut: higher strike than longPut // sold
        # longPut: lower strike than shortPut // bought
        for t, puts in allContracts.items():
            # if we have 2 puts with equal quantities then we have a put spread
            if len(puts) == 2 and sum(put.Quantity for put in puts) == 0:
                shortPut = next(filter(lambda put: put.Quantity < 0, puts), None)
                longPut = next(filter(lambda put: put.Quantity > 0, puts), None)
                if shortPut.Security.StrikePrice > longPut.Security.StrikePrice:
                    # TODO replace the OptionStrategies with the existing Lean code classes.
                    # OptionStrategies.BullPutSpread(canonicalOption, shortPut.Security.StrikePrice, longPut.Security.StrikePrice, shortPut.Security.Expiry)

                    contract = BullPutSpread(shortPut, longPut)
                    if not ignoreStored and contract.StrategyKey() not in self.ReadTrades("BullPutSpreads"): continue
                    contracts.append(contract)


        return contracts

    def BearCallSpreads(self, underlying, ignoreStored = False):
        # select all the calls in our portfolio
        allContracts = self.OptionStrategies(underlying, [OptionRight.Call])
        contracts = []

        # if we have 2 contracts per expiration then we have a call spread. Let's filter for bear call spreads now.
        # shortCall: lower strike than longCall // sold
        # longCall: higher strike than shortCall // bought
        for t, calls in allContracts.items():
            # if we have 2 calls with equal quantities then we have a call spread
            if len(calls) == 2 and sum(call.Quantity for call in calls) == 0:
                shortCall = next(filter(lambda call: call.Quantity < 0, calls), None)
                longCall = next(filter(lambda call: call.Quantity > 0, calls), None)
                if shortCall.Security.StrikePrice < longCall.Security.StrikePrice:
                    contract = BearCallSpread(shortCall, longCall)
                    if not ignoreStored and contract.StrategyKey() not in self.ReadTrades("BearCallSpreads"): continue
                    contracts.append(contract)

        return contracts

    def IronCondors(self, underlying, ignoreStored = False):
        allContracts = self.OptionStrategies(underlying)
        contracts = []

        # if we have 4 allContracts per expiration then we have an iron condor
        for t, c in allContracts.items():
            if len(c) == 4:
                calls = [call for call in c if call.Security.Right == OptionRight.Call]
                puts = [put for put in c if put.Security.Right == OptionRight.Put]
                # if we have 2 calls and 2 puts with equal quantities then we have a condor
                if (len(calls) == 2 and
                    sum(call.Quantity for call in calls) == 0 and
                    len(puts) == 2 and
                    sum(put.Quantity for put in puts) == 0):
                    shortCall = next(filter(lambda call: call.Quantity < 0, calls), None)
                    longCall = next(filter(lambda call: call.Quantity > 0, calls), None)
                    shortPut = next(filter(lambda put: put.Quantity < 0, puts), None)
                    longPut = next(filter(lambda put: put.Quantity > 0, puts), None)
                    contract = IronCondor(longCall, shortCall, longPut, shortPut)
                    if not ignoreStored and contract.StrategyKey() not in self.ReadTrades("IronCondors"): continue
                    contracts.append(contract)

        return contracts

    def FindStrategy(self, key, symbol, strategies = ["IronCondors", "BearCallSpreads", "BullPutSpreads"]):
        for strategy in strategies:
            contract = next(filter(lambda contract: contract.StrategyKey() == key, getattr(self, strategy)(symbol, True)))
            if contract: return contract
        return None

    def FixAssignment(self, order, strategies = ["Straddles"]):
        security = order.Symbol
        underlying = security.Underlying.Value
        trade = self.GetStoredTrade(security, strategies = strategies)

        if not trade: return

        # Only sold options can be assigned the bought one expire worthless.
        # Sell or buy the shares for the current order
        if security.ID.OptionRight == OptionRight.Put:
            self.algo.MarketOrder(underlying, - order.AbsoluteQuantity * 100, False)
        elif security.ID.OptionRight == OptionRight.Call:
            self.algo.MarketOrder(underlying, order.AbsoluteQuantity * 100, False)

        portfolioOptions = chain.from_iterable(self.OptionStrategies(underlying).values())
        portfolioOptions = [c.Symbol.Value for c in portfolioOptions]
        # sell/buy the other options in the strategy/trade
        for contract in trade.optionLegs:
            contractKey = contract.Value
            if contractKey in portfolioOptions:
                self.algo.Liquidate(contractKey, tag = "Liquidating {0} from {1}".format(contractKey, trade.StrategyKey()))

        return trade

    def GetStoredTrade(self, security, strategies = ["Straddles"]):
        orderKey = "".join(security.Value.split())

        for strategy in strategies:
            trades = self.ReadTrades(strategy)
            for t in trades:
                tradeElements = t.split("_")
                strategyName = tradeElements[0]
                # select all keys except first that would be the StrategyName
                strategyKeys = tradeElements[1:]
                if orderKey in strategyKeys:
                    optionValues = [c.replace(security.Underlying.Value, security.Underlying.Value + "   ") for c in strategyKeys]
                    return eval(strategyName)(*[self.algo.Securities[o].Symbol for o in optionValues])

        return None

    #
    # @param order [OrderEvent]
    # @param strategies [Array] // Eg: ["IronCondors", "BearCallSpreads"]
    def GetCurrentTrade(self, order, strategies = ["Straddles"]):
        symbol = order.Symbol
        security = symbol.ID
        # get all trades of all strategies
        for strategy in strategies:
            contracts = getattr(self, strategy)(security.Symbol, True)
            for t in contracts:
                if symbol.Value in t.StrategyKeys():
                    return t
        return None

    # Updates the data in the ObjectStore to reflect the trades/strategies in the portfolio.
    # @param symbol [Symbol]
    # @param strategies [Array] // Eg: ["IronCondors", "BearCallSpreads"]
    def SyncStored(self, symbol, strategies):
        for strategy in strategies:
            strategyKeys = [c.StrategyKey() for c in getattr(self, strategy)(symbol, ignoreStored = True)]
            self.update_ObjectStoreKey(strategy, strategyKeys)

    # Removes all keys from the object store thus clearing all data.
    def clear_ObjectStore(self):
        keys = [str(j).split(',')[0][1:] for _, j in enumerate(self.algo.ObjectStore.GetEnumerator())]
        for key in keys:
            self.algo.ObjectStore.Delete(key)

    # Updates the object store key with the new value without checking for the existing data.
    # @param key [String]
    # @param value [Array]
    def update_ObjectStoreKey(self, key, value):
        self.algo.ObjectStore.SaveBytes(str(key), pickle.dumps(value))

    # Add trades to the object store like the following params
    # @param key [String] // IronCondors
    # @param value [OptionStrategy] // Eg: IronCondor
    def AddTrade(self, key, value):
        jsonObj = self.ReadTrades(key)
        if value not in jsonObj: jsonObj.append(value)
        self.algo.ObjectStore.SaveBytes(str(key), pickle.dumps(jsonObj))

    # Remove trades from the object store by these params
    # @param key [String] // IronCondors
    # @param value [OptionStrategy] // Eg: IronCondor
    def RemoveTrade(self, key, value):
        jsonObj = self.ReadTrades(key)
        jsonObj.remove(value)
        self.algo.ObjectStore.SaveBytes(str(key), pickle.dumps(jsonObj))

    def ReadTrades(self, key):
        jsonObj = []
        if self.algo.ObjectStore.ContainsKey(key):
            deserialized = bytes(self.algo.ObjectStore.ReadBytes(key))
            jsonObj = (pickle.loads(deserialized))
            if jsonObj is None: jsonObj = []

        jsonObj = list(set(jsonObj)) # there should be unique values in our array

        return jsonObj

    def PrintPortfolio(self):
        # self.Debug("Securities:")
        # self.Securities
        #   contains Securities that you subscribe to but it does not mean that you are invested.
        #   calling self.AddOptionContract will add the option to self.Securities
        for kvp in self.Securities:
            symbol = kvp.Key # key of the array
            security = kvp.Value # value of the array (these are not attributes)
            holdings = security.Holdings
            self.Debug(str(security.Symbol))
            # self.Debug(str(security.Underlying))
            # self.Debug(str(security.Holdings))

        # self.Debug("Portfolio:")
        # self.Portfolio
        #   contains the Security objects that you are invested in.
        for kvp in self.Portfolio:
            symbol = kvp.Key
            holding = kvp.Value
            holdings = holding.Quantity
            # self.Debug(str(holding.Holdings))
            
#region imports
from AlgorithmImports import *
#endregion

# TODO update this to use the LEAN versions of the strategies and expand on them. Maybe we don't even have to do that. OPEN and CLOSE are not needed!

class BaseOptionStrategy(QCAlgorithm):
    name = ""
    optionLegs          = []
    securityOptionLegs  = []
    expiryList          = []

    def __init__(self, name, optionLegs):
        self.name = name
        self.optionLegs = optionLegs
    
    def ToString(self, algo):
        strikeDiffStr = ""
        if not isinstance(self.Strike(), list):
            difference = round( ( ( self.Strike() - self.UnderlyingPrice(algo) ) / self.UnderlyingPrice(algo) ) * 100, 2)
            strikeDiffStr = " - (${underlyingSymbol}) ${underlying} = {difference}%".format(underlyingSymbol = self.Underlying(), underlying = self.UnderlyingPrice(algo), difference = difference)

        return "{name}(${strike}{strikeDiffStr}; {expiration}; Exp. {expiresIn} days)".format(
                name = self.name, strike = self.Strike(), strikeDiffStr = strikeDiffStr, expiration = self.Expiration(), expiresIn = self.ExpiresIn(algo)
            )

    # Method that returns the number of days this strategy expires in. If we have multiple explirations we return an array.
    def ExpiresIn(self, algo):
        expirations = list(set(self.ExpiryList()))
        if len(expirations) > 1:
            return [(ex - algo.Time.date()).days for ex in expirations]
        else:
            return (expirations[0] - algo.Time.date()).days
    
    def StrategyKey(self):
        keysStr = "_".join(["".join(o.split()) for o in self.StrategyKeys()])
        return "{}_{}".format(self.NameKey(), keysStr)

    def StrategyKeys(self):
        if self.IsContract():
            ids = [o.Value for o in self.optionLegs]
        else:
            ids = [o.Symbol.Value for o in self.SecurityOptionLegs()]
        return ids

    def UnrealizedProfit(self):
        if not self.IsHolding(): raise Exception("The {} strategy does not hold OptionHolding instances.".format(self.name))

        return sum([c.UnrealizedProfitPercent for c in self.optionLegs]) / len(self.optionLegs) * 100

    # Checks if the expiration is the same
    def SameExpiration(self):
        expirations = list(set(self.ExpiryList()))
        if len(expirations) > 1:
            return False
        else:
            return True

    def Open(self, algo):
        algo.portfolio.AddTrade("{}s".format(self.NameKey()), self.StrategyKeys())
    
    def Close(self, algo):
        algo.portfolio.RemoveTrade("{}s".format(self.NameKey()), self.StrategyKeys())
    
    def ExpiryList(self):
        if self.IsContract():
            exList = [x.Date.date() for x in self.SecurityOptionLegs()]
        else:
            exList = [x.Expiry.date() for x in self.SecurityOptionLegs()]
        self.expiryList = self.expiryList or exList
        return self.expiryList

    def Expiration(self):
        return self.ExpiryList()[0]

    def AskPrice(self, algo):
        if self.IsContract():
            prices = [algo.Securities[o.Value].AskPrice for o in self.optionLegs]
        else:
            prices = [o.AskPrice for o in self.SecurityOptionLegs()]
        return round(sum(prices), 2)
    
    def UnderlyingPrice(self, algo):
        return algo.Securities[self.Underlying()].Price

    def Strike(self):
        if self.IsHolding() or self.IsContract():
            strikes = [c.StrikePrice for c in self.SecurityOptionLegs()]
        else:
            strikes = [c.Strike for c in self.SecurityOptionLegs()]
        
        strikes = list(set(strikes))
        if len(strikes) > 1:
            return strikes
        else:
            return strikes[0]

    def SecurityOptionLegs(self):
        if self.IsHolding():
            self.securityOptionLegs = self.securityOptionLegs or [x.Security for x in self.optionLegs]
        #  is this a contract Symbol?
        elif self.IsContract():
            self.securityOptionLegs = self.securityOptionLegs or [x.ID for x in self.optionLegs]
        else:
            self.securityOptionLegs = self.securityOptionLegs or self.optionLegs
        
        return self.securityOptionLegs

    def IsContract(self):
        return hasattr(self.optionLegs[0], 'ID')

    def IsHolding(self):
        return isinstance(self.optionLegs[0], OptionHolding)
    
    def IsOption(self):
        return isinstance(self.optionLegs[0], Option)

    def Underlying(self):
        if self.IsHolding() or self.IsContract():
            # This is a str. (it might not be in the case of the Holding though?!?)
            return self.SecurityOptionLegs()[0].Underlying.Symbol
        else:
            return self.SecurityOptionLegs()[0].UnderlyingSymbol
    
    def NameKey(self):
        return "".join(self.name.split())

class Straddle(BaseOptionStrategy):
    Put = None
    Call = None

    def __init__(self, Put, Call):
        BaseOptionStrategy.__init__(self, "Straddle", [Put, Call])
        self.Call = Call
        self.Put = Put

        self.__StrikeCheck()
        
        if self.SameExpiration() == False:
            raise Exception("The expiration should be the same for all options.")

    def __StrikeCheck(self):
        # is this an option holding?
        if self.IsHolding():
            callStrike = self.Call.Security.StrikePrice
            putStrike = self.Put.Security.StrikePrice
        #  is this a contract Symbol?
        elif self.IsContract():
            callStrike = self.Call.ID.StrikePrice
            putStrike = self.Put.ID.StrikePrice
        # is this a OptionChain Symbol?
        else:
            callStrike = self.Call.Strike
            putStrike = self.Put.Strike
            
        if callStrike != putStrike:
            raise Exception("The Call strike has to be equal to the Put strike.")

# TODO fix this CoveredCall (SoldCall) strategy here so it works. Change the name also as it's not a CoveredCall that implies the buying of the stock.

class SoldPut(BaseOptionStrategy):
    Put = None

    def __init__(self, put):
        BaseOptionStrategy.__init__(self, "Sold Put", [put])
        self.Put = put

class SoldCall(BaseOptionStrategy):
    Call = None

    def __init__(self, call):
        BaseOptionStrategy.__init__(self, "Sold Call", [call])
        self.Call = call

class OPut(BaseOptionStrategy):
    Option = None

    def __init__(self, option):
        BaseOptionStrategy.__init__(self, "Put", [option])
        self.Option = option

class OCall(BaseOptionStrategy):
    Option = None

    def __init__(self, option):
        BaseOptionStrategy.__init__(self, "Call", [option])
        self.Option = option

class BullPutSpread(BaseOptionStrategy):
    shortPut = None
    longPut = None

    def __init__(self, shortPut, longPut):
        BaseOptionStrategy.__init__(self, "Bull Put Spread", [shortPut, longPut])
        self.longPut = longPut
        self.shortPut = shortPut

        self.__StrikeCheck()
        
        if self.SameExpiration() == False:
            raise Exception("The expiration should be the same for all options.")

    def __StrikeCheck(self):
        if self.IsHolding():
            longStrike = self.longPut.Security.StrikePrice
            shortStrike = self.shortPut.Security.StrikePrice
        else:
            longStrike = self.longPut.Strike
            shortStrike = self.shortPut.Strike
            
        if longStrike > shortStrike:
            raise Exception("The longPut strike has to be lower than the shortPut strike.")

class BearCallSpread(BaseOptionStrategy):
    shortCall = None
    longCall = None
    
    def __init__(self, shortCall, longCall):
        BaseOptionStrategy.__init__(self, "Bear Call Spread", [shortCall, longCall])
        self.longCall = longCall
        self.shortCall = shortCall

        self.__StrikeCheck()
        
        if self.SameExpiration() == False:
            raise Exception("The expiration should be the same for all options.")

    def __StrikeCheck(self):
        if self.IsHolding():
            longStrike = self.longCall.Security.StrikePrice
            shortStrike = self.shortCall.Security.StrikePrice
        else:
            longStrike = self.longCall.Strike
            shortStrike = self.shortCall.Strike
            
        if longStrike < shortStrike:
            raise Exception("The longCall strike has to be higher than the shortCall strike.")

# An iron condor is an options strategy consisting of two puts (one long and one short) and two calls (one long and one short), and four strike prices, all with the same expiration date. 
# The iron condor earns the maximum profit when the underlying asset closes between the middle strike prices at expiration.
class IronCondor(BaseOptionStrategy):
    bullPutSpread = None
    bearCallSpread = None

    def __init__(self, longCall, shortCall, longPut, shortPut):
        BaseOptionStrategy.__init__(self, "Iron Condor", [longCall, shortCall, longPut, shortPut])

        self.bullPutSpread = BullPutSpread(shortPut, longPut)
        self.bearCallSpread = BearCallSpread(shortCall, longCall)

#region imports
from AlgorithmImports import *
from .Handler import Handler
from .OStrategies import *
#endregion


# Your New Python File
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from AlgorithmImports import *
from Selection.OptionUniverseSelectionModel import OptionUniverseSelectionModel

class SafeCallOptionSelectionModel(OptionUniverseSelectionModel):
    '''Creates option chain universes that select only the two week earliest expiry call contract
    and runs a user defined optionChainSymbolSelector every day to enable choosing different option chains'''
    def __init__(self, select_option_chain_symbols, targetExpiration = 14):
        super().__init__(timedelta(1), select_option_chain_symbols)
        self.targetExpiration = targetExpiration

    def Filter(self, filter):
        '''Defines the option chain universe filter'''
        return (filter.Strikes(+3, +5)
                      .Expiration(self.targetExpiration, self.targetExpiration * 2)
                      .IncludeWeeklys()
                      .OnlyApplyFilterAtMarketOpen())
#region imports
from AlgorithmImports import *
from QuantConnect.Logging import *
from MarketHours import MarketHours
from PortfolioHandler import Handler
from PortfolioHandler.OStrategies import SoldCall
from CustomIndicators import RipsterClouds
from CustomIndicators import TTMSqueezePro
#endregion

class SafeSoldCallAlphaModel(AlphaModel):
    options = {}
    algorithm = None
    sliceData = None

    def __init__(self, algorithm, ticker, option):
        self.ticker = ticker
        self.option = option
        self.tolerance = 0.1
        self.algorithm = algorithm
        self.symbol = algorithm.AddEquity(self.ticker)
        self.marketHours = MarketHours(algorithm, self.ticker)
        self.portfolio = Handler(self.algorithm)

        self.targetExpiration = ExpirationRange(7, 30)

        self.Log = Logger(self.algorithm)

        self.Credit = TradeCredit()

        # INDICATORS version:
        self.ATRSlow = self.algorithm.ATR(self.ticker, 15, resolution = Resolution.Daily)
        self.ATRFast = self.algorithm.ATR(self.ticker, 6, resolution = Resolution.Daily)
        
        self.EMASlow = self.algorithm.EMA(self.ticker, 20, resolution = Resolution.Daily)
        self.EMAFast = self.algorithm.EMA(self.ticker, 6, resolution = Resolution.Daily)

        self.aroon = self.algorithm.AROON(self.ticker, 5, resolution = Resolution.Daily)

        # Consider changing this to TradeBar in order to do the model for multiple symbols?!!
        self.LastPrice = RollingWindow[float](5) # RollingWindow[TradeBar](5)
        self.LastRoll = 0
        self.LastDay = 0
        self.vixSymbol = self.algorithm.AddIndex("VIX", Resolution.Minute).Symbol
        self.VIX = 0

        # Set up default Indicators, these indicators are defined on the Value property of incoming data (except ATR and AROON which use the full TradeBar object)
        # self.indicators = {
        #     # 'ATRSlow' : self.ATRSlow,
        #     # 'ATRFast' : self.ATRFast,
        #     # 'EMASlow' : self.EMASlow,
        #     # 'EMAFast' : self.EMAFast,
        #     # 'AROON' : self.aroon
        # }
        # self.algorithm.benchmark.AddIndicators(self.indicators)

        # TODO: - draw a line on the trade plot that shows the constant strike price and try and make it not touch the stock price.

    def Update(self, algorithm, data):
        if algorithm.IsWarmingUp: return []

        if self.ticker not in data.Keys: return []

        if data.ContainsKey(self.vixSymbol):
            self.VIX = data[self.vixSymbol].Close

        # TODO print the RollPrice to see how the algo determines the proper strike to pick and make sure we are looking further based on that for safety
        self.algorithm.benchmark.SetBeta(self.__RollStrike())

        self.algorithm.benchmark.PrintBenchmark()

        weekday = self.algorithm.Time.isoweekday()
        insights = []

        # IMPORTANT!!: In order to fix the cancelled closing order instance only check to close an order after 12. The reason is the market orders that happen
        #              before market open are converted to MarketOnOpen orders and it seems this does not get resolved.
        
        # THIS DOES A NEGATIVE RESULT
        # if self.algorithm.Time.hour > self.marketHours.get_CurrentOpen().hour + 2:
        #     # Monitor every minute
        #     if self.marketHours.get_CurrentClose().hour - 1 > self.algorithm.Time.hour:
        #         insights.extend(self.MonitorCoveredCall(data))
        #     # SCAN just once an hour
        #     if self.algorithm.Time.minute == 5 and self.marketHours.get_CurrentClose().hour - 2 > self.algorithm.Time.hour:
        #         insights.extend(self.Scanner(data))

        # if self.algorithm.Time.hour > self.marketHours.get_CurrentOpen().hour + 4:
        #     insights.extend(self.MonitorHedgePut(data))

        # if weekday == DayOfWeek.Thursday or weekday == DayOfWeek.Tuesday:
        #     if 11 > self.algorithm.Time.hour >= 10 and (self.algorithm.Time.minute == 15 or self.algorithm.Time.minute == 45):
        #         insights.extend(self.Scanner(data))
        
        # POSITIVE RESULTS ($2158 / 0.87%)

        # TODO think about:
        # - if VIX is high check multiple times a day
        # - if VIX is low check once a day
        # slightly better the above. It's 50% less than checking every hour.

        # if self.VIX > 30:
        #     if self.marketHours.get_CurrentClose().hour - 2 > self.algorithm.Time.hour > self.marketHours.get_CurrentOpen().hour + 2:
        #         if self.algorithm.Time.minute in list(range(10, 60))[0::10]:
        #             insights.extend(self.MonitorCoveredCall(data))
        #         if self.algorithm.Time.minute == 5:
        #             insights.extend(self.Scanner(data))
        # else:
        #     if self.LastDay != self.algorithm.Time.day and self.marketHours.get_CurrentClose().hour - 2 > self.algorithm.Time.hour > self.marketHours.get_CurrentOpen().hour + 2:
        #         self.LastDay = self.algorithm.Time.day
        #         insights.extend(self.Scanner(data))
        #         insights.extend(self.MonitorCoveredCall(data))

        if self.marketHours.get_CurrentClose().hour - 1 > self.algorithm.Time.hour > self.marketHours.get_CurrentOpen().hour + 2:
            if self.algorithm.Time.minute in list(range(10, 60))[0::10]:
                insights.extend(self.MonitorCoveredCall(data))
            if self.algorithm.Time.minute == 5:
                insights.extend(self.Scanner(data))


        return insights

    def MonitorHedgePut(self, data):
        insights = []

        stockPrice = self.algorithm.Securities[self.ticker].Price
        for eput in self.portfolio.UnderlyingSoldOptions(self.ticker, OptionRight.Put):
            close = False
            expiresIn = self.__ExpiresIn(eput.Security)

            if eput.UnrealizedProfitPercent * 100 > 90:
                close = True
            # if already invested in this position then check if it expires today
            elif expiresIn == 0 and self.algorithm.Time.hour == self.marketHours.get_CurrentClose().hour - 4:
                close = True
            # elif stockPrice < eput.Security.StrikePrice:
            #     close = True

            if close:
                insights.append(
                    Insight.Price(eput.Symbol, Resolution.Minute, 1, InsightDirection.Flat)
                )
        return insights

    def MonitorCoveredCall(self, data):
        insights = []
        
        # v1
        #   - profit <= -100
        #   - profit > 95
        #   - ExpiresIn == 0 and Time.hour > 15
        # v2
        #   - ExpiresIn <= 2
        #   - profit > 80
        #   - profit <= -100

        # hedged = self.__IsHedged()
        stockPrice = self.algorithm.Securities[self.ticker].Price
        for call in self.portfolio.SoldCalls(self.ticker, expiration = [0, self.targetExpiration.Stop]):
            close = False
            hedge = False

            # if ((stockPrice * 1.1 > call.Strike()) and call.UnrealizedProfit() > -50):
            #     close = True
            #     self.Log.Add("ROLL - call {call}: stockPrice({stockPrice}) * 1.1 > strike{strike} and profit{profit} > -50".format(
            #         call = call.ToString(self.algorithm), profit = call.UnrealizedProfit(), stockPrice = stockPrice, strike = call.Strike() )
            #     )

            # if ((stockPrice * 1.2 > call.Strike()) and call.UnrealizedProfit() > -25):
            #     close = True
            #     self.Log.Add("ROLL - call {call}: stockPrice({stockPrice}) * 1.2 > strike{strike} and profit{profit} > -25".format(
            #         call = call.ToString(self.algorithm), profit = call.UnrealizedProfit(), stockPrice = stockPrice, strike = call.Strike() )
            #     )
            
            # v2 ?
            if call.ExpiresIn(self.algorithm) <= 2:
                close = True
                self.Log.Add("ROLL - call {}: expiresIn{} <= 2".format(call.ToString(self.algorithm), call.ExpiresIn(self.algorithm) ))

            # v2 ?
            # if call.UnrealizedProfit() > 80:
            #     close = True
            #     self.Log.Add("ROLL - call {}: unrealized profit {} > 80".format(call.ToString(self.algorithm), call.UnrealizedProfit() ))
            
            # v1 GOOD RESULT!
            if call.UnrealizedProfit() > 95:
                close = True
                self.Log.Add("ROLL - call {}: unrealized profit {} > 95".format(call.ToString(self.algorithm), call.UnrealizedProfit() ))

            # v1 GOOD RESULT!
            if call.UnrealizedProfit() <= -100:
                close = True
                self.Log.Add("ROLL - call {}: unrealized profit {} <= -100".format(call.ToString(self.algorithm), call.UnrealizedProfit() ))


            # if stockPrice >= call.Security.StrikePrice / 1.1:
            #     close = True
            #     hedge = True

            # if stockPrice > call.Strike() and self.algorithm.Time.hour >= 12 and call.ExpiresIn(self.algorithm) < round(self.targetExpiration * 0.8):
            #     close = True
                # hedge = True
                # if already invested in this position then check if it expires today

            # v1 GOOD RESULT!
            if call.ExpiresIn(self.algorithm) == 0 and self.algorithm.Time.hour > 15:
                close = True
                self.Log.Add("ROLL - call {}: expiresIn == 0 and hour {} > 15".format(call.ToString(self.algorithm), self.algorithm.Time.hour ))

            # if self.indicators['MACD'].Signal.Current.Value >= 10 and self.indicators['RSI'].Current.Value >= 70 and stockPrice >= call.Security.StrikePrice / 1.5:
            #     close = True
            # elif (self.__SignalDeltaPercent() < -self.tolerance and self.indicators['RSI'].Current.Value > 70):
            #     close = True
            #     hedge = True

            # if hedge and not hedged:
            #     hedgeContract = self.__FindPut(data)
            #     insights.append(
            #         Insight.Price(hedgeContract.Symbol, Resolution.Minute, 1, InsightDirection.Down)
            #     )

            if close:
                self.Credit.Buy(call.AskPrice(self.algorithm))
                self.Log.Add("ROLL - buying with credit {} / ${}".format(self.Credit.ToString(), call.AskPrice(self.algorithm)))
                insights.append(
                    Insight.Price(call.Call.Symbol, Resolution.Minute, 15, InsightDirection.Flat)
                )
        self.Log.Print()

        return insights

    def Scanner(self, data):
        insights = []

        ## Buying conditions
        # if self.indicators['RSI'].Current.Value < 40: return insights
        # IF RSI is > 40  -- NO
        #     | YES

        # if self.indicators['MACD'].Signal.Current.Value >= 10 and self.indicators['RSI'].Current.Value >= 70:
        #     return insights

        # 0 positions covered calls or hedge -- NO
        #     | YES
        # lenSoldCalls = len(self.portfolio.UnderlyingSoldOptions(self.ticker, OptionRight.Call))
        lenSoldCalls = len(self.portfolio.SoldCalls(self.ticker, expiration = [0, self.targetExpiration.Stop]))

        # if lenSoldCalls > 0 or self.__IsHedged():
        #   return insights

        if lenSoldCalls == 0:
            # call = self.__FindCall(data)
            call = self.__IndicatorFindCall(data)
            self.Log.Add("SCANNER - Trying to find a call")
            if call:
                self.Credit.Sell(call.AskPrice(self.algorithm))
                self.Log.Add("SCANNER - selling {} with credit {} / ${}".format(call.ToString(self.algorithm), self.Credit.ToString(), call.AskPrice(self.algorithm)) )
                insights.append(
                    Insight.Price(call.Call, Resolution.Minute, 15, InsightDirection.Down)
                )
        self.Log.Print()

        return insights

    def __FindPut(self, data, delta = -0.6):
        chain = data.OptionChains.GetValue(self.option)

        if not chain: return None
        # The way we are defining expiration here is by taking an absolute value. So it might just be __ExpiresIn(x) > expiration
        contracts = [x for x in chain if self.__ExpiresIn(x) >= self.targetExpiration and x.Right == OptionRight.Put]

        # # only tradable contracts
        # # !!IMPORTANT!!: to escape the error `Backtest Handled Error: The security with symbol 'SPY 220216P00425000' is marked as non-tradable.`
        contracts = [x for x in contracts if self.algorithm.Securities[x.Symbol].IsTradable]

        if not contracts: return None

        return min(contracts, key=lambda x: abs(x.Greeks.Delta - delta))

    def __FindCall(self, data):
        call = None
        stockPrice = self.__StockPrice()

        minCredit = 1 # default min credit of 100$

        # in case we are rolling and we had a loss then roll for a bigger premium
        if self.Credit.LastValue > 1:
            minCredit = self.Credit.LastValue * 1.1

        contracts = self.algorithm.OptionChainProvider.GetOptionContractList(self.ticker, self.algorithm.Time.date())
        if len(contracts) == 0 : return None

        # # only tradable contracts
        # # !!IMPORTANT!!: to escape the error `Backtest Handled Error: The security with symbol 'SPY 220216P00425000' is marked as non-tradable.`
        contracts = [x for x in contracts if self.algorithm.Securities[x.ID.Symbol].IsTradable]

        # pick withing expiration range
        contracts = [i for i in contracts if self.targetExpiration.Start <= (i.ID.Date.date() - self.algorithm.Time.date()).days <= self.targetExpiration.Stop]

        if not contracts: return None

        # select only calls
        contracts = [x for x in contracts if x.ID.OptionRight == OptionRight.Call]
        # sort by date
        contracts = sorted(contracts, key = lambda x: x.ID.Date, reverse = False)

        # TODO make this work based on EMA and some formula below self.__RollStrike
        # pick contracts with strikes between 15% and 20% of spot price
        contracts = [x for x in contracts if stockPrice * 1.1 < x.ID.StrikePrice < stockPrice * 1.20]
        # contracts = ATMcontracts

        # add all the option contracts so we can access all the data.
        for c in contracts:
            self.algorithm.AddOptionContract(c, Resolution.Minute)

        calls = [[self.algorithm.Securities[c.Value].AskPrice, c] for c in contracts]
        call = min(calls, key=lambda x: abs(x[0] - minCredit))[1]

        if not call: return None

        return SoldCall(call)

    def __ChainFindCall(self, data, delta = 0.01):
        chain = data.OptionChains.GetValue(self.option)

        if not chain: return None
        # The way we are defining expiration here is by taking an absolute value. So it might just be __ExpiresIn(x) > expiration
        contracts = [x for x in chain if self.__ExpiresIn(x) >= self.targetExpiration and x.Right == OptionRight.Call]

        # # only tradable contracts
        # # !!IMPORTANT!!: to escape the error `Backtest Handled Error: The security with symbol 'SPY 220216P00425000' is marked as non-tradable.`
        contracts = [x for x in contracts if self.algorithm.Securities[x.Symbol].IsTradable]

        if not contracts: return None

        return min(contracts, key=lambda x: abs(x.Greeks.Delta - delta))

    def __IsHedged(self):
        return len(self.portfolio.SoldPuts(self.ticker, expiration = [0, self.targetExpiration.Stop])) > 0

    # Method that returns a boolean if the security expires in the given days
    # @param security [Security] the option contract
    def __ExpiresIn(self, security):
        return (security.Expiry.date() - self.algorithm.Time.date()).days

    def __SignalDeltaPercent(self):
        return (self.indicators['MACD'].Current.Value - self.indicators['MACD'].Signal.Current.Value) / self.indicators['MACD'].Fast.Current.Value

    def __StockPrice(self):
        return self.algorithm.Securities[self.ticker].Price

    def __IndicatorFindCall(self, data):
        call = None
        stockPrice = self.__StockPrice()

        minCredit = 1 # default min credit of 100$

        # in case we are rolling and we had a loss then roll for a bigger premium
        if self.Credit.LastValue > 1:
            minCredit = self.Credit.LastValue * 1.1

        contracts = self.algorithm.OptionChainProvider.GetOptionContractList(self.ticker, self.algorithm.Time.date())
        if len(contracts) == 0 : return None

        # # only tradable contracts
        # # !!IMPORTANT!!: to escape the error `Backtest Handled Error: The security with symbol 'SPY 220216P00425000' is marked as non-tradable.`
        contracts = [x for x in contracts if self.algorithm.Securities[x.ID.Symbol].IsTradable]

        # pick within expiration range
        contracts = [i for i in contracts if self.targetExpiration.Start <= (i.ID.Date.date() - self.algorithm.Time.date()).days <= self.targetExpiration.Stop]

        if not contracts: return None

        # select only calls
        contracts = [x for x in contracts if x.ID.OptionRight == OptionRight.Call]
        # sort by date
        contracts = sorted(contracts, key = lambda x: x.ID.Date, reverse = False)

        # in order to incorporate minCredit we can pick a range of contracts around the rollPrice.
        rollStrike = self.__RollStrike()
        # pick 3 contracts lower and 3 contracts up from rollStrike
        # contracts = [x for x in contracts if 15 < abs(x.ID.StrikePrice - rollStrike) < 15]
        # for c in contracts:
        #   self.algorithm.AddOptionContract(c, Resolution.Minute)
        # calls = [[self.algorithm.Securities[c.Value].AskPrice, c] for c in contracts]
        # call = min(calls, key=lambda x: abs(x[0] - minCredit))[1]

        # pick the contract at the defined RollPrice
        call = min(contracts, key = lambda x: abs(x.ID.StrikePrice - rollStrike))

        # add all the option contracts so we can access all the data.
        self.algorithm.AddOptionContract(call, Resolution.Minute)

        if not call: return None

        return SoldCall(call)

    # Roll to a strike a certain percentage in price up
    def __RollStrike(self):
        ATRSlow = self.ATRSlow.Current.Value
        ATRFast = self.ATRFast.Current.Value

        EMASlow = self.EMASlow.Current.Value
        EMAFast = self.EMAFast.Current.Value

        stockPrice = self.__StockPrice()

        ema_ratio = EMAFast / EMASlow

        self.LastPrice.Add(stockPrice)
        
        # oldestPrice - currentPrice over the 5 day window
        move = self.LastPrice[self.LastPrice.Count-1] - self.LastPrice[0]

        #newStrike = ((
        #    max(ATRSlow, ATRFast) / max(EMAFast, stockPrice) + 1
        #) ** 3) * max(EMAFast, EMASlow, stockPrice) #* ema_ratio

        # TODO replace the 1.4 by EMA ratio
        #newStrike = (max(EMAFast, EMASlow, stockPrice) + max(ATRSlow, ATRFast)) * ema_ratio
        #newStrike = (max(EMAFast, stockPrice) + max(ATRSlow, ATRFast)) * (ema_ratio ** 1.5)

        # TODO because of these given ratios 1.25, 1.3 the testing starting with 2017 does not give good results. The swings in price were too big back then.

        newStrike = max(EMASlow, EMAFast, stockPrice)*1.25 * (ema_ratio ** 2) + max(ATRSlow, ATRFast) * 1
        #max(EMAFast, stockPrice)*1.05 * (ema_ratio ** 2) + move * 0.8,

        newStrike = max(
            newStrike,
            max(EMAFast, stockPrice) * 1.25
            #stockPrice * 1.03
            #EMAFast
        )

        # TODO instead of ATR lets just check how big the move was in the past 5 days and project it into the future
        newStrike = min(
            newStrike,
            max(EMAFast, stockPrice)*1.3
        )

        #newStrike = max(EMAFast, stockPrice) * 1.02 + move * 0.8

        # dampen falloff
        if self.LastRoll > newStrike:
            newStrike = (self.LastRoll + newStrike*2) / 3

        self.LastRoll = newStrike

        # in case of rolling we try to make up for the loss by not moving the strike too much

        #if stockPrice > strike:
        #    newStrike = strike * 1.05

        return newStrike


class ExpirationRange:
    def __init__(self, start, stop):
        self.Start  = start
        self.Stop   = stop

    def ToArr(self):
        return [self.Start, self.Stop]

# Class to hold the credit of our trade so we can separate LEAP profit/credit from short profit but also combine them when needed.
class TradeCredit:
    Value = 0
    LastValue = 0

    # When we buy something we remove from credit as we are paying from balance to get the options.
    def Buy(self, value = 0):
        self.LastValue = value
        self.Value -= value
        return self.Value

    # When we are selling we add to credit as we are receiving premium for selling them.
    def Sell(self, value = 0):
        self.Value += value
        return self.Value

    def ToString(self):
        return "Total: ${} (last ${})".format(round(self.Value, 2) * 100, round(self.LastValue, 2))

# Make this logger class so we can print logging messages in section for easier read.
class Logger:
    Messages = []
    Algorithm = None

    def __init__(self, algorithm):
        self.Algorithm = algorithm

    def Add(self, message):
        self.Messages.append(message)

    def Print(self):
        if len(self.Messages) > 0:
            self.Algorithm.Log("------***------")
            for m in self.Messages:
                self.Algorithm.Log(m)
            self.Algorithm.Log("------|||------")
            self.Messages = []

#region imports
from AlgorithmImports import *
from QuantConnect.Logging import *
from MarketHours import MarketHours
from PortfolioHandler import Handler
from PortfolioHandler.OStrategies import OCall
from CustomIndicators import RipsterClouds
from CustomIndicators import TTMSqueezePro
#endregion


class SqueezeAlphaModel(AlphaModel):
    algorithm = None

    def __init__(self, algorithm, ticker, option):
        self.ticker = ticker
        self.option = option
        self.algorithm = algorithm
        self.symbol = algorithm.AddEquity(self.ticker, resolution = Resolution.Minute)
        self.marketHours = MarketHours(algorithm, self.ticker)
        self.portfolio = Handler(self.algorithm)
        
        self.targetExpiration = ExpirationRange(25, 45)
        self.Log = Logger(self.algorithm)
        self.Credit = TradeCredit()

        # indicators
        self.squeeze = TTMSqueezePro("Squeeze", length = 20)
        algorithm.RegisterIndicator(self.ticker, self.squeeze, Resolution.Daily)
        # history = self.algorithm.History(self.symbol.Symbol, 21, Resolution.Daily)
        # self.squeeze.Warmup(history.loc[self.ticker])
        # TODO: think about warming up the indicator: https://www.quantconnect.com/docs/v2/writing-algorithms/indicators/manual-indicators
        # self.algorithm.SetWarmUp(TimeSpan.FromDays(60))
        self.algorithm.WarmUpIndicator(self.ticker, self.squeeze, Resolution.Daily)
        self.indicators = {
            'Squeeze' : self.squeeze
        }
        self.algorithm.benchmark.AddIndicators(self.indicators)

        # In order to update the current day until a certain point (in our testing 5 mins before market close) we need to build a consolidator and update it
        # self.symbol = self.AddEquity("SPY", Resolution.Minute).Symbol
        self.consolidator = TradeBarConsolidator(timedelta(1))
        self.algorithm.SubscriptionManager.AddConsolidator(self.symbol.Symbol, self.consolidator)


        # self.consolidator = TradeBarConsolidator(timedelta(days=1))
        # # Update the Squeeze indicator with the consolidated bar
        # self.consolidator.DataConsolidated += (lambda _, bar : self.squeeze.Update(bar))
        # self.SubscriptionManager.AddConsolidator(self.symbol, self.consolidator)
        self.algorithm.Schedule.On(self.algorithm.DateRules.EveryDay(self.ticker), self.algorithm.TimeRules.BeforeMarketClose(self.ticker, 5), self.UpdateSqueeze)
        # self.algorithm.Schedule.On(self.algorithm.DateRules.EveryDay(self.ticker), self.algorithm.TimeRules.BeforeMarketClose(self.ticker, 5), self.UpdateSqueeze)

    def UpdateSqueeze(self):
        data = self.algorithm.CurrentSlice
        if data.ContainsKey(self.ticker):
            # dataPoint = IndicatorDataPoint(self.symbol, data[self.ticker].EndTime, data[self.ticker].Close)
            # self.squeeze.ManualUpdate(data[self.ticker])
            # self.algorithm.Plot('Daily Value', 'CLOSE', data[self.ticker].Close)
            # self.algorithm.Plot('Daily Value', 'HIGH', data[self.ticker].High)
            # self.algorithm.Plot('Daily Value', 'LOW', data[self.ticker].Low)
            if self.squeeze.IsReady:
                self.algorithm.benchmark.PrintBenchmark()

    def Update(self, algorithm, data):
        insights = []
        # TODO: all works good it's just one day delay. Consider removing the registerIndicator line and update the indicator manually here before day end.
        #       one problem might be with warmup. Consider this for warmup where we do that manually also: https://www.quantconnect.com/forum/discussion/1810/indicator-updates-after-hours-trading/p1/comment-5524
        if self.ticker not in data.Keys: return insights
        # Update the squeeze with the data on the current day before market close.
        # if self.marketHours.get_CurrentClose().hour - 1 == self.algorithm.Time.hour and self.algorithm.Time.minute == 45:
        #     bar = data.Bars[self.ticker]
        #     self.squeeze.Update(bar)

        if algorithm.IsWarmingUp: return insights
        if not self.squeeze.IsReady: return insights

        # reset your indicators when splits and dividends occur. 
        # If a split or dividend occurs, the data in your indicators becomes invalid because it doesn't account for the price adjustments that the split or dividend causes.
        if data.Splits.ContainsKey(self.ticker) or data.Dividends.ContainsKey(self.ticker):
            # Reset the indicator
            self.squeeze.Reset() 

        # if self.marketHours.get_CurrentClose().hour - 1 > self.algorithm.Time.hour > self.marketHours.get_CurrentOpen().hour + 2:
        #     if self.algorithm.Time.minute in list(range(10, 60))[0::10]:
        #         insights.extend(self.MonitorCall(data))
        #     if self.algorithm.Time.minute == 5:
        #         insights.extend(self.Scanner(data))

        # TODO: manually update the squeeze indicator for the today value. I'm thinking it should be temporary and replaced once the regular update comes the next day.
        if self.marketHours.get_CurrentClose().hour - 1 == self.algorithm.Time.hour:
            # Update squeeze indicator for today.
            # if self.algorithm.Time.minute == 25:
            #     self.squeeze.Update(self.consolidator.WorkingBar)

            # Check the existing position
            if self.algorithm.Time.minute == 30:
                insights.extend(self.MonitorCall(data))

            # Scan for a new position.
            if self.algorithm.Time.minute == 45:
                insights.extend(self.Scanner(data))
        
        return insights


    def MonitorCall(self, data):
        insights = []
        
        #   - ExpiresIn <= 2
        #   - profit > 80
        #   - profit <= -100

        stockPrice = self.algorithm.Securities[self.ticker].Price
        for call in self.portfolio.Calls(self.ticker, expiration = [0, self.targetExpiration.Stop]):
            close = False

            if call.ExpiresIn(self.algorithm) <= 7:
                close = True
                self.Log.Add("SELL call {}: expiresIn{} <= 7".format(call.ToString(self.algorithm), call.ExpiresIn(self.algorithm) ))

            # as soon as we lose momentum over 2 days we sell.
            if self.squeeze.LosingMomentum():
                close = True
                self.Log.Add("SELL call {}: bearish momentum".format(call.ToString(self.algorithm) ))

            if close:
                self.Credit.Sell(call.AskPrice(self.algorithm))
                self.Log.Add("SELL with credit {} / ${}".format(self.Credit.ToString(), call.AskPrice(self.algorithm)))
                insights.append(
                    Insight.Price(call.Option.Symbol, Resolution.Minute, 15, InsightDirection.Flat)
                )
        self.Log.Print()

        return insights

    def Scanner(self, data):
        insights = []

        ## Buying conditions
        lenCalls = len(self.portfolio.Calls(self.ticker, expiration = [0, self.targetExpiration.Stop]))

        # We have calls already then just skip for now.
        if lenCalls > 0: return insights

        # if we did not change from a squeeze to no sqz `green` then skip
        if not self.squeeze.SqueezeChange(toColor='green'): return insights
        
        # if the squeeze that happened since the change to `green` was not longer than 2 days skip
        if not self.squeeze.SqueezeDuration(over=2): return insights

        # only buy calls if we are gaining momentum
        if not self.squeeze.GainingMomentum(): return insights
        
        # only buy if we are bullish
        if not self.squeeze.Bullish(): return insights
 
        # call = self.__FindCall(data)
        call = self.__IndicatorFindCall(data)
        self.Log.Add("SCANNER - Trying to find a call")
        if call:
            self.Credit.Buy(call.AskPrice(self.algorithm))
            self.Log.Add("SCANNER - buying {} with credit {} / ${}".format(call.ToString(self.algorithm), self.Credit.ToString(), call.AskPrice(self.algorithm)) )
            insights.append(
                Insight.Price(call.Option, Resolution.Minute, 15, InsightDirection.Up)
            )
        self.Log.Print()

        return insights

    def __StockPrice(self):
        return self.algorithm.Securities[self.ticker].Price

    def __IndicatorFindCall(self, data):
        call = None
        stockPrice = self.__StockPrice()

        minCredit = 1 # default min credit of 100$

        # in case we are rolling and we had a loss then roll for a bigger premium
        if self.Credit.LastValue > 1:
            minCredit = self.Credit.LastValue * 1.1

        contracts = self.algorithm.OptionChainProvider.GetOptionContractList(self.ticker, self.algorithm.Time.date())
        if len(contracts) == 0 : return None

        # # only tradable contracts
        # # !!IMPORTANT!!: to escape the error `Backtest Handled Error: The security with symbol 'SPY 220216P00425000' is marked as non-tradable.`
        contracts = [x for x in contracts if self.algorithm.Securities[x.ID.Symbol].IsTradable]

        # pick within expiration range
        contracts = [i for i in contracts if self.targetExpiration.Start <= (i.ID.Date.date() - self.algorithm.Time.date()).days <= self.targetExpiration.Stop]

        if not contracts: return None

        # select only calls
        contracts = [x for x in contracts if x.ID.OptionRight == OptionRight.Call]
        # sort by date
        contracts = sorted(contracts, key = lambda x: x.ID.Date, reverse = False)

        # pick the contract ATM
        call = min(contracts, key = lambda x: abs(x.ID.StrikePrice - stockPrice))

        # add all the option contracts so we can access all the data.
        self.algorithm.AddOptionContract(call, Resolution.Minute)

        if not call: return None

        return OCall(call)

class ExpirationRange:
    def __init__(self, start, stop):
        self.Start  = start
        self.Stop   = stop

    def ToArr(self):
        return [self.Start, self.Stop]

# Class to hold the credit of our trade so we can separate LEAP profit/credit from short profit but also combine them when needed.
class TradeCredit:
    Value = 0
    LastValue = 0

    # When we buy something we remove from credit as we are paying from balance to get the options.
    def Buy(self, value = 0):
        self.LastValue = value
        self.Value -= value
        return self.Value

    # When we are selling we add to credit as we are receiving premium for selling them.
    def Sell(self, value = 0):
        self.Value += value
        return self.Value

    def ToString(self):
        return "Total: ${} (last ${})".format(round(self.Value, 2) * 100, round(self.LastValue, 2))

# Make this logger class so we can print logging messages in section for easier read.
class Logger:
    Messages = []
    Algorithm = None

    def __init__(self, algorithm):
        self.Algorithm = algorithm

    def Add(self, message):
        self.Messages.append(message)

    def Print(self):
        if len(self.Messages) > 0:
            self.Algorithm.Log("------***------")
            for m in self.Messages:
                self.Algorithm.Log(m)
            self.Algorithm.Log("------|||------")
            self.Messages = []

#region imports
from AlgorithmImports import *
from Risk.MaximumDrawdownPercentPerSecurity import MaximumDrawdownPercentPerSecurity
import numpy as np
from PortfolioHandler import Handler
#endregion

class TrailingStopRisk(RiskManagementModel):
    '''Provides an implementation of IRiskManagementModel that limits the drawdown per holding to the specified percentage'''

    def __init__(self, maximumDrawdownPercent = 5, profitTarget = None, ticker = None, strategies = [], algo = None):
        '''Initializes a new instance of the MaximumDrawdownPercentPerSecurity class
        Args:
            maximumDrawdownPercent: The maximum percentage drawdown allowed for any single security holding'''
        self.maximumDrawdownPercent = -abs(maximumDrawdownPercent)
        self.profitTarget = profitTarget
        self.strategies = strategies
        self.algo = algo
        self.symbol = Symbol.Create(ticker, SecurityType.Equity, Market.USA)    
        self.assetBestPnl = {}

    def ManageRisk(self, algorithm, targets):
        '''Manages the algorithm's risk at each time step
        Args:
            algorithm: The algorithm instance
            targets: The current portfolio targets to be assessed for risk'''
        targets = []
        # portfolio = self.algo.portfolio
        portfolio = Handler(algorithm)
        # TODO: this works but it's clear it does not get the ObjectStore from our main algo?!! WHY?
        # TODO: fix this code to work with any strategy including SoldCalls. It might actually work!
        portfolio.SyncStored(self.symbol, self.strategies)

        for strategy in self.strategies:
            for contract in getattr(portfolio, strategy)(self.symbol):
                key = contract.StrategyKey()
                if key not in self.assetBestPnl.keys():
                    self.assetBestPnl[key] = contract.UnrealizedProfit()
                self.assetBestPnl[key] = np.maximum(self.assetBestPnl[key], contract.UnrealizedProfit())
                
                pnl = contract.UnrealizedProfit() - self.assetBestPnl[key]
                # To handle profitTarget like 50% from when bought think of checking for
                if self.profitTarget is not None:
                    if self.assetBestPnl[key] >= self.profitTarget and pnl < self.maximumDrawdownPercent:
                        for c in contract.optionLegs:
                            targets.append(PortfolioTarget(c.Symbol, InsightDirection.Flat))
                else:
                    if pnl < self.maximumDrawdownPercent:
                        for c in contract.optionLegs:
                            targets.append(PortfolioTarget(c.Symbol, InsightDirection.Flat))

        return targets

# region imports
from AlgorithmImports import *

# from Alphas.ConstantAlphaModel import ConstantAlphaModel
# from Selection.OptionUniverseSelectionModel import OptionUniverseSelectionModel
# from Execution.ImmediateExecutionModel import ImmediateExecutionModel
from TrailingStopRisk import TrailingStopRisk
from Risk.NullRiskManagementModel import NullRiskManagementModel
from Benchmark import Benchmark
from PortfolioHandler import Handler
# from UniverseSelection import OptionUniverseSelectionModel2
from OptionsSpreadExecution import OptionsSpreadExecution
from SafeSoldCallAlphaModel import SafeSoldCallAlphaModel
from SafeCallOptionSelectionModel import SafeCallOptionSelectionModel

from MilkTheCowAlphaModel import MilkTheCowAlphaModel
from MilkTheCowOptionSelectionModel import MilkTheCowOptionSelectionModel

from SqueezeAlphaModel import SqueezeAlphaModel
# endregion

class AddAlphaModelAlgorithm(QCAlgorithm):
    def Initialize(self):
        ''' Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.'''
        # self.SetStartDate(2012, 2, 4)  # Set Start Date
        # self.SetEndDate(2020, 31, 7)    # Set End Date

        self.SetStartDate(2020, 1, 1)  # Set Start Date
        self.SetEndDate(2022, 1, 1)    # Set End Date

        self.SetCash(100_000)          # Set Strategy Cash
        # Set settings and account setup
        self.UniverseSettings.Resolution = Resolution.Minute
        self.UniverseSettings.FillForward = False
        # THIS ALSO DOES NOT SEEM TO FIX THE MARGIN ISSUE
        # self.Portfolio.MarginCallModel = MarginCallModel.Null

        self.SetSecurityInitializer(self.CustomSecurityInitializer)
        self.SetBrokerageModel(BrokerageName.InteractiveBrokersBrokerage, AccountType.Margin) # Set InteractiveBrokers Brokerage model

        # Main variables
        self.ticker = self.GetParameter("ticker")
        self.benchmark = Benchmark(self, self.ticker)         
        self.portfolio = Handler(self)
        self.option = Symbol.Create(self.ticker, SecurityType.Option, Market.USA, f"?{self.ticker}")
        equity = Symbol.Create(self.ticker, SecurityType.Equity, Market.USA)    
        
        # Milk the cow models
        # self.SetUniverseSelection(MilkTheCowOptionSelectionModel(self.SelectOptionChainSymbols, expirationRange=[7, 30])) # Options for short Straddle
        # self.SetUniverseSelection(MilkTheCowOptionSelectionModel(self.SelectOptionChainSymbols, expirationRange=[365, 395])) # Options for long Straddle
        
        # self.SetAlpha(MilkTheCowAlphaModel(self, self.ticker, self.option))
        self.SetExecution(OptionsSpreadExecution(acceptingSpreadPercent=0.050))

        # Squeeze model
        self.SetAlpha(SqueezeAlphaModel(self, self.ticker, self.option))
        
        # self.SetRiskManagement(TrailingStopRisk(algo = self, maximumDrawdownPercent = 20, profitTarget = 90, ticker = self.ticker, strategies = ["SoldCalls", "SoldPuts"]))
        
        self.SetPortfolioConstruction(SingleSharePortfolioConstructionModel())
        # self.SetExecution(ImmediateExecutionModel())
        self.SetRiskManagement(NullRiskManagementModel())
        
        # Safe call models
        # self.SetUniverseSelection(SafeCallOptionSelectionModel(self.SelectOptionChainSymbols, targetExpiration=14))
        # self.SetAlpha(SafeSoldCallAlphaModel(self, self.ticker, self.option))
        # self.SetExecution(OptionsSpreadExecution(acceptingSpreadPercent=0.050))
        # self.SetRiskManagement(TrailingStopRisk(algo = self, maximumDrawdownPercent = 100, profitTarget = 95, ticker = self.ticker, strategies = ["SoldCalls", "SoldPuts"]))
        # self.SetRiskManagement(TrailingStopRisk(algo = self, maximumDrawdownPercent = 20, profitTarget = 90, ticker = self.ticker, strategies = ["SoldCalls", "SoldPuts"]))


        # OTHER models from learning
        # self.SetUniverseSelection(OptionUniverseSelectionModel2(timedelta(1), self.SelectOptionChainSymbols))
        # self.SetAlpha(ConstantOptionContractAlphaModel(InsightType.Price, InsightDirection.Up, timedelta(hours = 0.5)))
        # self.SetExecution(SpreadExecutionModel())
        # self.SetExecution(MarketOrderExecutionModel())
    
        # set the buying power model
        # security = self.AddEquity(self.ticker)
        # security.SetBuyingPowerModel(CustomBuyingPowerModel())

    def SelectOptionChainSymbols(self, utcTime):
        return [ self.option ]

    def OnOrderEvent(self, orderEvent):
        # MILK THE COW ALGO! FROM: https://optionstradingiq.com/calendar-straddle/
        # As long as we’re on the topic of rolling issues; what if you get assigned?
        # First, keep calm since it’s no big deal.
        # Simply close out the shares assigned, close out the other option in the short straddle and just reopen your short straddle using the guidelines.
        order = self.Transactions.GetOrderById(orderEvent.OrderId)

        strategies = ["Calls"] # Eg: ["Straddles", "SoldPuts"]

        if orderEvent.Status == OrderStatus.Filled:
            if orderEvent.IsAssignment and order.Type == OrderType.OptionExercise:
                # - after each event that assigns an option find out if the option was in a strategy and close it all (sell stock sell the other option/s)
                trade = self.portfolio.FixAssignment(order, strategies = strategies)
            else:
                # - sync with ObjectStore the portfolio strategies i give
                # - don't store in the Store the single options just strategies
                # - sync after each Event that buys/sells a new option that is not an assignment
                self.portfolio.SyncStored(self.ticker, strategies = strategies)
                # this method is expected to ignore the ObjectStore strategies and just filter what is on the portfolio.
                trade = self.portfolio.GetCurrentTrade(order, strategies = strategies)
            if trade: self.benchmark.PrintTrade(order = order, trade = trade, quantity = order.Quantity)

    # https://www.quantconnect.com/forum/discussion/13199/greeks-with-optionchainprovider/p1/comment-38906
    # def OptionContractSecurityInitializer(self, security):
    #     if security.Type == SecurityType.Equity:
    #         symbol = security.Symbol
    #         security.VolatilityModel = StandardDeviationOfReturnsVolatilityModel(30, Resolution.Daily)
    #         for index, row in self.History(symbol, 30, Resolution.Daily).iterrows():
    #             security.SetMarketPrice(IndicatorDataPoint(index[1], row.close))
                
    #     if security.Type == SecurityType.Option:
    #         security.PriceModel = OptionPriceModels.CrankNicolsonFD()

    # https://www.quantconnect.com/forum/discussion/10236/options-delta-always-zero/p1/comment-29181
    def CustomSecurityInitializer(self, security):
        '''Initialize the security with raw prices'''
        security.SetDataNormalizationMode(DataNormalizationMode.Raw)
        security.SetMarketPrice(self.GetLastKnownPrice(security))

        if security.Type == SecurityType.Equity:
            security.VolatilityModel = StandardDeviationOfReturnsVolatilityModel(30)
            history = self.History(security.Symbol, 31, Resolution.Daily)
            if history.empty or 'close' not in history.columns:
                return
            
            for time, row in history.loc[security.Symbol].iterrows():
                trade_bar = TradeBar(time, security.Symbol, row.open, row.high, row.low, row.close, row.volume)    
                security.VolatilityModel.Update(security, trade_bar)
        
        elif security.Type == SecurityType.Option:    
            security.PriceModel = OptionPriceModels.CrankNicolsonFD() #  BlackScholes()

class SingleSharePortfolioConstructionModel(PortfolioConstructionModel):
    '''Portfolio construction model that sets target quantities to 1 for up insights and -1 for down insights'''
    def CreateTargets(self, algorithm, insights):
        targets = []
        for insight in insights:
            targets.append(PortfolioTarget(insight.Symbol, insight.Direction * self.TargetQuantity(algorithm, insight.Symbol)))
        return targets

    # Method that defines how many option contracts to sell or buy by symbol. 
    # Here we can expand this to be variable by Symbol or defined by a parameter or by portfolio alocation based on margin available.
    def TargetQuantity(self, algo, symbol):
        # algo.CalculateOrderQuantity(symbol, 1)
        # TODO calculate the quantity based on target allocation. Like if we set the allocation to 50% we should get the cashValue / 2 and try and 
        #      get the margin requirement based on that. Not sure how?!?
        return 10


class CustomBuyingPowerModel(BuyingPowerModel):
    # def GetMaximumOrderQuantityForTargetBuyingPower(self, parameters):
    #     quantity = super().GetMaximumOrderQuantityForTargetBuyingPower(parameters).Quantity
    #     quantity = np.floor(quantity / 100) * 100
    #     return GetMaximumOrderQuantityResult(quantity)

    def HasSufficientBuyingPowerForOrder(self, parameters):
        return HasSufficientBuyingPowerForOrderResult(True)