Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio -1.031 Tracking Error 0.276 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset |
# five day sma of vol import numpy class VAlgorithm(QCAlgorithmFramework): def Initialize(self): self.SetStartDate(2020, 1, 1) # self.SetEndDate(2021, 3, 1) self.spy = self.AddEquity("SPY", Resolution.Hour).Symbol self.lookbackSTD = 30 self.lookbackSMA = 5 self.SetWarmup(self.lookbackSTD + self.lookbackSMA, Resolution.Daily) self.std = self.STD(self.spy, self.lookbackSTD, Resolution.Daily) # standard deviation of returns over past [x] days self.stdAvg = IndicatorExtensions.SMA(self.std, self.lookbackSMA) # [x]-day moving average of standard deviation self.vol = 0 self.volAvg = 0 def OnEndOfDay(self): if self.IsWarmingUp or not self.stdAvg.IsReady: return # Calculate annualized volatility self.vol = self.std.Current.Value*np.sqrt(252) self.volAvg = self.stdAvg.Current.Value*np.sqrt(252) self.Plot("Indicators", "Vol", self.vol) self.Plot("Indicators", "Vol-Avg", self.volAvg)