Overall Statistics |
Total Trades 9 Average Win 0% Average Loss -2.22% Compounding Annual Return -21.609% Drawdown 51.800% Expectancy -1 Net Profit -48.126% Sharpe Ratio -0.548 Loss Rate 100% Win Rate 0% Profit-Loss Ratio 0 Alpha 0.048 Beta -2.307 Annual Standard Deviation 0.287 Annual Variance 0.082 Information Ratio -0.601 Tracking Error 0.41 Treynor Ratio 0.068 Total Fees $93.51 |
using MathNet.Numerics.LinearAlgebra; using MathNet.Numerics.Statistics; namespace QuantConnect.Algorithm.CSharp { /// <summary> /// This algorithm uses Math.NET Numerics library, specifically Linear Algebra object (Vector and Matrix) and operations, in order to solve a portfolio optimization problem. /// </summary> public class PortfolioOptimizationNumericsAlgorithm : QCAlgorithm { private const double _targetReturn = 0.1; private const double _riskFreeRate = 0.01; private double _lagrangeMultiplier; private double _portfolioRisk; private Matrix<double> Sigma; private List<SymbolData> SymbolDataList; public Vector<double> DiscountMeanVector { get { if (SymbolDataList == null) { return null; } return Vector<double>.Build.DenseOfArray(SymbolDataList.Select(x => (double)x.Return).ToArray()) - Vector<double>.Build.Dense(SymbolDataList.Count, _riskFreeRate); } } /// <summary> /// Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized. /// </summary> public override void Initialize() { SetStartDate(2013, 10, 07); //Set Start Date SetEndDate(DateTime.Now.AddDays(-1)); //Set End Date SetCash(1000000); //Set Strategy Cash // Find more symbols here: http://quantconnect.com/data AddEquity("SPY", Resolution.Daily); AddEquity("AIG", Resolution.Daily); AddEquity("BAC", Resolution.Daily); AddEquity("IBM", Resolution.Daily); var allHistoryBars = new List<double[]>(); SymbolDataList = new List<SymbolData>(); foreach (var security in Securities) { var history = History(security.Key, TimeSpan.FromDays(365)); allHistoryBars.Add(history.Select(x => (double)x.Value).ToArray()); SymbolDataList.Add(new SymbolData(security.Key, history)); } // Diagonal Matrix with each security risk (standard deviation) var S = Matrix<double>.Build.DenseOfDiagonalArray(SymbolDataList.Select(x => (double)x.Risk).ToArray()); // Computes Correlation Matrix (using Math.NET Numerics Statistics) var R = Correlation.PearsonMatrix(allHistoryBars); // Computes Covariance Matrix (using Math.NET Numerics Linear Algebra) Sigma = S * R * S; ComputeLagrangeMultiplier(); ComputeWeights(); ComputePortfolioRisk(); Log(string.Format("Lagrange Multiplier: {0,7:F4}", _lagrangeMultiplier)); Log(string.Format("Portfolio Risk: {0,7:P2} ", _portfolioRisk)); } /// <summary> /// OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here. /// </summary> /// <param name="data">Slice object keyed by symbol containing the stock data</param> public override void OnData(Slice data) { if (!Portfolio.Invested) { foreach (var symbolData in SymbolDataList.OrderBy(x => x.Weight)) { Log("Purchased Stock: " + symbolData); SetHoldings(symbolData.Symbol, symbolData.Weight); } } } /// <summary> /// Computes Lagrange Multiplier /// </summary> private void ComputeLagrangeMultiplier() { var denominatorMatrix = DiscountMeanVector * Sigma.Inverse() * DiscountMeanVector.ToColumnMatrix(); _lagrangeMultiplier = (_targetReturn - _riskFreeRate) / denominatorMatrix.ToArray().First(); } /// <summary> /// Computes weight for each risky asset /// </summary> private void ComputeWeights() { var weights = _lagrangeMultiplier * Sigma.Inverse() * DiscountMeanVector.ToColumnMatrix(); for (var i = 0; i < weights.RowCount; i++) { SymbolDataList[i].SetWeight(weights.ToArray()[i, 0]); } } /// <summary> /// Computes Portfolio Risk /// </summary> private void ComputePortfolioRisk() { var weights = Vector<double>.Build.DenseOfArray(SymbolDataList.Select(x => (double)x.Return).ToArray()); var portfolioVarianceMatrix = weights * Sigma * weights.ToColumnMatrix(); _portfolioRisk = Math.Sqrt(portfolioVarianceMatrix.ToArray().First()); } /// <summary> /// Symbol Data class to store security data (Return, Risk, Weight) /// </summary> class SymbolData { private RateOfChange ROC = new RateOfChange(2); private SimpleMovingAverage SMA; private StandardDeviation STD; public Symbol Symbol { get; private set; } public decimal Return { get { return SMA.Current; } } public decimal Risk { get { return STD.Current; } } public decimal Weight { get; private set; } public SymbolData(Symbol symbol, IEnumerable<BaseData> history) { Symbol = symbol; SMA = new SimpleMovingAverage(365).Of(ROC); STD = new StandardDeviation(365).Of(ROC); foreach (var data in history) { Update(data); } } public void Update(BaseData data) { ROC.Update(data.Time, data.Value); } public void SetWeight(double value) { Weight = (decimal)value; } public override string ToString() { return string.Format("{0}: {1,10:P2}\t{2,10:P2}\t{3,10:P2}", Symbol.Value, Weight, Return, Risk); } } } }