Overall Statistics |
Total Trades 3099 Average Win 0.12% Average Loss -0.15% Compounding Annual Return -22.733% Drawdown 79.700% Expectancy -0.672 Net Profit -79.627% Sharpe Ratio -6.393 Probabilistic Sharpe Ratio 0% Loss Rate 82% Win Rate 18% Profit-Loss Ratio 0.81 Alpha 0 Beta 0 Annual Standard Deviation 0.025 Annual Variance 0.001 Information Ratio -6.393 Tracking Error 0.025 Treynor Ratio 0 Total Fees $3419.02 Estimated Strategy Capacity $400000.00 Lowest Capacity Asset BOIL V0IZ4MOFEHR9 |
#region imports from AlgorithmImports import * #endregion # https://quantpedia.com/Screener/Details/4 # buy SPY ETF at its closing price and sell it at the opening each day. import numpy as np class OvernightTradeAlgorithm(QCAlgorithm): def Initialize(self): self.SetStartDate(2015, 1, 1) #Set Start Date self.SetEndDate(2021, 3, 1) #Set End Date self.SetCash(100000) #Set Strategy Cash self.boil = self.AddEquity("BOIL", Resolution.Minute).Symbol self.spy = self.AddEquity("SPY", Resolution.Minute).Symbol self.SetBrokerageModel(BrokerageName.InteractiveBrokersBrokerage) self.Schedule.On(self.DateRules.EveryDay(self.spy), self.TimeRules.BeforeMarketClose("SPY", 15), self.EveryDayBeforeMarketClose) self.Schedule.On(self.DateRules.EveryDay(self.spy), self.TimeRules.AfterMarketOpen("SPY", 0), self.EveryDayAfterMarketOpen) def EveryDayBeforeMarketClose(self): if not self.Portfolio.Invested: # self.SetHoldings(self.spy, 1) self.SetHoldings(self.boil, -.5) def EveryDayAfterMarketOpen(self): if self.Portfolio.Invested: self.Liquidate() def OnData(self, data): pass